bzoj4176. Lucas的数论 杜教筛

题意:求\(\sum_{i=1}^n\sum_{j=1}^nd(ij),d是约数个数函数\)
题解:首先有一个结论\(d(ij)=\sum_{x|i}\sum_{y|j}[(i,j)==1]\)
那么\(\sum_{i=1}^n\sum_{j=1}^n\sum_{x|i}\sum_{y|j}\sum_{d|(i,j)}\mu(d)\)
枚举d,\(\sum_{i=1}^n\sum_{j=1}^n\sum_{d|i,d|j}\mu(d)d(\frac{i}{d})d(\frac{j}{d})=\sum_{d=1}^n\mu(d)\sum_{d|i}\sum_{d|j}d(\frac{i}{d})d(\frac{j}{d})=\sum_{d=1}^n\mu(d)\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}d(i)\sum_{j=1}^{\lfloor \frac{n}{d} \rfloor}d(j)\)
这里我们需要分块求\(\mu\)和\(d\)的前缀和,\(\mu\)很好求,对于d,我们考虑\(d=I*I\),考虑把杜教筛中的\(g(x)=\mu\),\(I*I*\mu=I*e=e\),那么\(S(n)=\sum_{i=1}^n1-\sum_{d=2}\mu(d)S(\lfloor \frac{n}{d} \rfloor)\)

//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
//#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
template<typename T>
inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>
inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}

using namespace std;

const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=5000000+10,maxn=3000000+10,inf=0x3f3f3f3f;

int prime[N],cnt;
ll d[N],num[N],mu[N];
bool mark[N];
map<ll,ll>dd,muu;
void init()
{
    mu[1]=d[1]=1;
    for(int i=2;i<N;i++)
    {
        if(!mark[i])prime[++cnt]=i,mu[i]=-1,d[i]=2,num[i]=1;
        for(int j=1;j<=cnt&&i*prime[j]<N;j++)
        {
            mark[i*prime[j]]=1;
            if(i%prime[j]==0)
            {
                mu[i*prime[j]]=0;
                num[i*prime[j]]=num[i]+1;
                d[i*prime[j]]=d[i]/num[i*prime[j]]*(num[i*prime[j]]+1);
                break;
            }
            mu[i*prime[j]]=-mu[i];
            d[i*prime[j]]=d[i]<<1;
            num[i*prime[j]]=1;
        }
    }
    for(ll i=1;i<N;i++)
    {
        add(d[i],d[i-1]);
        mu[i]=(mu[i]+mod)%mod;
        add(mu[i],mu[i-1]);
    }
}
ll getmu(ll n)
{
    if(n<N)return mu[n];
    if(muu.find(n)!=muu.end())return muu[n];
    ll ans=1;
    for(ll i=2,j;i<=n;i=j+1)
    {
        j=n/(n/i);
        ll te=(j-i+1)%mod;
        sub(ans,te*getmu(n/i)%mod);
    }
    return muu[n]=ans;
}
ll getd(ll n)
{
    if(n<N)return d[n];
    if(dd.find(n)!=dd.end())return dd[n];
    ll ans=n%mod;
    for(ll i=2,j;i<=n;i=j+1)
    {
        j=n/(n/i);
        ll te=(getmu(j)-getmu(i-1)+mod)%mod;
        sub(ans,te*getd(n/i)%mod);
    }
    return dd[n]=ans;
}
int main()
{
    init();
    ll n;scanf("%lld",&n);
    ll ans=0;
    for(ll i=1,j;i<=n;i=j+1)
    {
        j=n/(n/i);
        ll te=(getmu(j)-getmu(i-1)+mod)%mod;
        add(ans,te*getd(n/i)%mod*getd(n/i)%mod);
    }
    printf("%lld\n",ans);
    return 0;
}
/********************

********************/

原文地址:https://www.cnblogs.com/acjiumeng/p/9744905.html

时间: 2024-10-07 05:08:20

bzoj4176. Lucas的数论 杜教筛的相关文章

【bzoj4176】Lucas的数论 莫比乌斯反演+杜教筛

题目描述 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其中 表示i的约数个数.他现在长大了,题目也变难了. 求如下表达式的值: 其中f(ij)表示ij的约数个数. 他发现答案有点大,只需要输出模1000000007的值. 输入 第一行一个整数n. 输出 一行一个整数ans,表示答案模1000000007的值. 样例输入 2 样例输出 8 题解 莫比乌斯反演+杜教筛 首先有个神奇

【bzoj 4176】 Lucas的数论 莫比乌斯反演(杜教筛)

Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其中 表示i的约数个数.他现在长大了,题目也变难了. 求如下表达式的值: 一行一个整数ans,表示答案模1000000007的值. Sample Input 2 Sample Output 8 HINT 对于100%的数据n <= 10^9. 题解: 解锁新技能:杜教筛. 再复习一下: 若$F(n)=\s

BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演

Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其中 表示i的约数个数.他现在长大了,题目也变难了. 求如下表达式的值: 其中 表示ij的约数个数. 他发现答案有点大,只需要输出模1000000007的值. Input 第一行一个整数n. Output 一行一个整数ans,表示答案模1000000007的值. Sample Input 2 Sample Ou

数论入门——莫比乌斯函数,欧拉函数,狄利克雷卷积,线性筛,莫比乌斯反演,杜教筛

一个菜鸡对数论的一点点理解... 莫比乌斯函数 定义函数\(\mu(n)\)为: 当n有平方因子时,\(\mu(n)=0\). 当n没有平方因子时,\(\mu(n)=(-1)^{\omega(n)}\),\(\omega(n)\)表示n不同质因子的个数. 性质1: \(\sum_{d|n}\mu(d)=[n=1]\) 证明:我们把n分解质因数,则原式\(=(-1+1)^{\omega(n)}=0\). 因为对于不同的质因子,只有选和不选两种方案,这是一个组合数相加的形式,偶数加奇数减,根据二项式

【数论】狄利克雷卷积及其快速计算方法及杜教筛

目录(假的 狄利克雷卷积基础知识 数论函数 狄利克雷卷积定义 狄利克雷卷积性质 常用卷积 卷积计算方法 最暴力的暴力 稍好的暴力 优美的暴力 莫比乌斯反演(待填坑) 杜教筛 经典杜教筛 第二种杜教筛 第三种杜教筛 背景 本人即将去CTS&APIO2019,由于一些特殊原因,发现自己数论突然变得很菜. 就决定在去的前一天,翻出来以前的数论学习资料看一看.翻到了czgj的校内狄利克雷卷积课件,发现其中提到了的任意数列\(f(n)\)和\(g(n)\)的狄利克雷卷积\((f*g)(n)\)(从1到n,

【Luogu3768】简单的数学题(莫比乌斯反演,杜教筛)

[Luogu3768]简单的数学题(莫比乌斯反演,杜教筛) 题面 洛谷 \[求\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j)\] $ n<=10^9$ 题解 很明显的把\(gcd\)提出来 \[\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^nij[gcd(i,j)==d]\] 习惯性的提出来 \[\sum_{d=1}^nd^3\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}ij[gcd(i,j)==1]\] 后面这玩意很明显的来一发

杜教筛 与 数论函数(狄雷克卷积)

为了改变数论只会GCD的尴尬局面,我们来开一波数论: 数论函数: 数论函数是定义域在正整数的函数. 积性函数: f(ab)=f(a)f(b),gcd(a,b)=1 ,完全积性函数: f(ab)=f(a)f(b) . 常见积性函数: φ(n) ,μ(n) (莫比乌斯函数), d(n) (因子个数), σ(n) (因子和). 单位函数 : e(n)=[n=1] . 常见完全积性函数: Idk(n)=n^k , 1(n)=Id0(n) , Id(n)=Id1(n) . 我们 有以下令人窒息的操作: (

【学术篇】分析矿洞 杜教筛

数论什么的都去死吧! 看着题解我都能化式子用完4页草纸... 另外吐槽一句出题人的拼音学的是真好, 不知道是不是故意的. 其实题解已经写得挺详细的了. 我就是提一些出题人觉得太easy没必要提但是做题还是需要的一些东西....(因为这些东西我基本都是现学的) 然而之前刚刚学完mobius反演就暂时性脱坑的我啥也不会啊.. 看到前排dp和曲神在水luogu的欢(bao/du)乐(ling/liu)赛, 就想去看看. 然后就点了报名但是发现自己什么都不会. 去看了看T1. 就是这道题. 然后成功的化

51nod1238 最小公倍数之和 V3 莫比乌斯函数 杜教筛

题意:求\(\sum_{i = 1}^{n}\sum_{j = 1}^{n}lcm(i, j)\). 题解:因为是用的莫比乌斯函数求的,所以推导比大部分题解多...而且我写式子一般都比较详细,所以可能看上去很多式子,实际上是因为每一步都写了,几乎没有跳过的.所以应该都可以看懂的. 末尾的\(e\)函数是指的\(e[1] = 1\),\(e[x] = 0(x != 1)\)这样一个函数 \[\sum_{i = 1}^{n}\sum_{j = 1}^{n}lcm(i, j)\] \[\sum_{i