3. 支持向量机

3. 支持向量机

3.1 本质

基本模型是定义在特征空间上的间隔最大的线性分类器。核技巧使之成为实质上的非线性分类器。

学习策略是间隔最大化,可形式化为求解凸二次优化问题。等价于正则化的合页损失函数的最小化问题。

学习算法是求解凸二次规划的最优化算法。

理解支持向量机可以从简至繁推进:线性可分支持向量机(硬间隔SVM),线性支持向量机(软间隔SVM),非线性支持向量机(软间隔最大化+核技巧)。

3.2 训练数据集

假设给定训练数据集:\(T={(x_1,y_1), (x_2, y_2), ..., (x_N, y_N)}\)

其中\(x \in R^n\),\(y\in\{+1, -1\}\),+1表示为正例,-1表示负例。

学习的目标在于在特征空间中寻找一个分离超平面\(w \cdot x + b = 0\),将正例和负例正确分开。感知机利用误分类最小的策略。SVM利用间隔最大化的策略。

3.3 线性可分SVM

假设训练数据集线性可分,则存在无穷个分离超平面可将两类数据正确分开。若分类超平面为:\(w \cdot x + b = 0\)

相应的分类决策函数为:\(f(x)=sign(w \cdot x + b)\)

这种判别为模型为线性可分SVM。

线性可分SVM的学习策略(寻找超平面的策略)为间隔最大化

那么,何为间隔呢?

对于一个分离超平面\(w \cdot x +b = 0\),样本点\(x_i\)距离超平面的几何距离为:

\(\gamma_i = \frac{|w \cdot x+b|}{||w||}\)。一般来说,点\(x_i\)距离超平面的远近可以表示分类预测的确信度。距离超平面较远的点,其分类预测结果更可信。\(w \cdot x_i + b\)的符号与类标记\(y_i\)是否一致表示分类的正确性

间隔就是分类正确性和确信度的一种表达,可分为函数间隔和几何间隔。\(|w \cdot x_i + b|\)可以相对地表示点\(x_i\)距离超平面的远近,\(y_i(w \cdot x_i +b)\)为函数间隔。\[\frac{y_i(w \cdot x_i + b)}{||w||}\]为几何间隔

3.3.1 求解分割超平面的问题建模:间隔最大化

SVM学习的基本想法是求解能够正确划分训练数据集且几何间隔最大的分离超平面。

\(min \gamma\)

\(s.t. \frac{y_i(w \cdot x_i + b)}{||w||}>\gamma\)

原文地址:https://www.cnblogs.com/hardsoftware/p/9763895.html

时间: 2024-11-16 11:43:04

3. 支持向量机的相关文章

R与数据分析旧笔记(十二)分类 (支持向量机)

支持向量机(SVM) 支持向量机(SVM) 问题的提出:最优分离平面(决策边界) 优化目标 决策边界边缘距离最远 数学模型 问题转化为凸优化 拉格朗日乘子法--未知数太多 KKT变换和对偶公式 问题的解决和神经网络化 对偶公式是二次规划问题,有现成的数值方法可以求解 大部分的拉格朗日乘子为0,不为0的对应于"支持向量"(恰好在边界上的样本点) 只要支持向量不变,修改其他样本点的值,不影响结果,当支持变量发生改变时,结果一般就会变化 求解出拉格朗日乘子后,可以推出w和b,判别函数可以写成

支持向量机(SVM)算法

支持向量机(support vector machine)是一种分类算法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的.通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,即支持向量机的学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解. 具体原理: 1. 在n维空间中找到一个分类超平面,将空间上的点分类.如下图是线性分类的例子. 2. 一般而言,一个点距离超平面的

SVM支持向量机-拉格朗日,对偶算法的初解

许多地方得SVM讲得都很晦涩,不容易理解,最近看到一篇不错的博文写得很好,同时加上自己的理解,重新梳理一下知识要点 http://blog.csdn.net/zouxy09/article/details/17291543 一.引入 SVM是个分类器.我们知道,分类的目的是学会一个分类函数或分类模型(或者叫做分类器),该模型能把数据库中的数据项映射到给定类别中的某一个,从而可以用于预测未知类别. 对于用于分类的支持向量机,它是个二分类的分类模型.也就是说,给定一个包含正例和反例(正样本点和负样本

python大战机器学习——支持向量机

支持向量机(Support Vector Machine,SVM)的基本模型是定义在特征空间上间隔最大的线性分类器.它是一种二类分类模型,当采用了核技巧之后,支持向量机可以用于非线性分类. 1)线性可分支持向量机(也称硬间隔支持向量机):当训练数据线性可分是,通过硬间隔最大化,学得一个线性可分支持向量机 2)线性支持向量机(也称为软间隔支持向量机):当训练数据近似线性可分时,通过软间隔最大化,学得一个线性支持向量机 3)非线性支持向量机:当训练数据不可分时,通过使用核技巧以及软间隔最大化,学得一

机器学习之支持向量机(Support Vector Machine)(更新中...)

支持向量机 支持向量机(support vector machines,SVMs)是一种二类分类模型.它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机:支持向量机还包括核技巧,这使它成为实质上的非线性分类器.支持向量机的学习策略就是间隔最大化,可形式化为一个求解凸二次规划(convex quadratic programming)的问题. 支持向量机学习方法包含构建由简至繁的模型:线性可分支持向量机(linear support vector machine in

支持向量机原理

支持向量机概念 线性分类器 首先介绍一下线性分类器的概念,C1和C2是要区分的两个类别,在二维平面中它们的样本如上图所示.中间的直线就是一个分类函数,它可以将两类样本完全分开.一般的,如果一个线性函数能够将样本完全正确的分开,就称这些数据是线性可分的,否则称为非线性可分的. 线性函数是关于自变量的一次函数,在一维空间里就是一个点,在二维空间里就是一条直线,三维空间里就是一个平面,如果不关注空间的维数,线性函数还有一个统一的名称--超平面(Hyper Plane),记作: g(x) = wx +

统计学习笔记之支持向量机

支持向量机(SVM)是一种二分类模型,跟之前介绍的感知机有联系但也有区别.简单来讲,感知机仅仅是找到了一个平面分离正负类的点,意味着它是没有任何约束性质的,可以有无穷多个解,但是(线性可分)支持向量机和感知机的区别在于,支持向量机有一个约束条件,即利用间隔最大化求最优分离超平面,这时,支持向量机的解就是唯一存在的. 首先来看线性可分的支持向量机,对于给定的数据集,需要学习得到的分离超平面为: 以及对应的分类决策函数: 一般而言,一个点距离分离超平面的远近可以表示分类预测的确信程度.如果超平面确定

SVM -支持向量机原理详解与实践之四

SVM -支持向量机原理详解与实践之四 SVM原理分析 SMO算法分析 SMO即Sequential minmal optimization, 是最快的二次规划的优化算法,特使对线性SVM和稀疏数据性能更优.在正式介绍SMO算法之前,首先要了解坐标上升法. 坐标上升法(Coordinate ascent) 坐标上升法(Coordinate Ascent)简单点说就是它每次通过更新函数中的一维,通过多次的迭代以达到优化函数的目的. 坐标上升法原理讲解 为了更加通用的表示算法的求解过程,我们将算法表

svm支持向量机系列(1) -- 线性支持向量机

1.主要内容 沿着之前学些机器学习基石课程中学习到的工具进行分析,该工具主要就是vc维,沿着特征转换这一目标进行探讨: (1).当数据的特征的数量很大时,如何进行特征转换?支撑向量机 (2).能不能找到具有预测性的特征然后联合起来? (3).如何发现隐藏的具有预测意义的特征?原先的神经网络到现在的深度学习技术. 这节课主要讲述svm的由来,背后的原理,最佳化的求解问题. 2.线性支持向量机的由来 (1).从线性分类器说起到svm问题的提出 如果数据线性可分,那么必然可以找到一条线对齐进行分类,计

支持向量机SVM

SVM(Support Vector Machine)有监督的机器学习方法,可以做分类也可以做回归.有好几个模型,SVM基本,SVM对偶型,软间隔SVM,核方法,前两个有理论价值,后两个有实践价值.下图来自龙老师整理课件. 基本概念 线性SVM,线性可分的分类问题场景下的SVM.硬间隔. 线性不可分SVM,很难找到超平面进行分类场景下的SVM.软间隔. 非线性SVM,核函数(应用最广的一种技巧,核函数的选择十分重要). SVR(支持向量回归).可以做回归. SVC,用SVM进行分类. 一.硬间隔