这里,我是将Caffe中im2col的解析过程直接拉了出来,使用C++进行了输出,方便理解。代码如下:
1 #include<iostream> 2 3 using namespace std; 4 5 bool is_a_ge_zero_and_a_lt_b(int a,int b) 6 { 7 if(a>=0 && a <b) return true; 8 return false; 9 } 10 11 void im2col_cpu(const float* data_im, const int channels, 12 const int height, const int width, const int kernel_h, const int kernel_w, 13 const int pad_h, const int pad_w, 14 const int stride_h, const int stride_w, 15 const int dilation_h, const int dilation_w, 16 float* data_col) { 17 const int output_h = (height + 2 * pad_h - 18 (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1; 19 const int output_w = (width + 2 * pad_w - 20 (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1; 21 const int channel_size = height * width; 22 for (int channel = channels; channel--; data_im += channel_size) { 23 for (int kernel_row = 0; kernel_row < kernel_h; kernel_row++) { 24 for (int kernel_col = 0; kernel_col < kernel_w; kernel_col++) { 25 int input_row = -pad_h + kernel_row * dilation_h; 26 for (int output_rows = output_h; output_rows; output_rows--) { 27 if (!is_a_ge_zero_and_a_lt_b(input_row, height)) { 28 for (int output_cols = output_w; output_cols; output_cols--) { 29 *(data_col++) = 0; 30 } 31 } else { 32 int input_col = -pad_w + kernel_col * dilation_w; 33 for (int output_col = output_w; output_col; output_col--) { 34 if (is_a_ge_zero_and_a_lt_b(input_col, width)) { 35 *(data_col++) = data_im[input_row * width + input_col]; 36 } else { 37 *(data_col++) = 0; 38 } 39 input_col += stride_w; 40 } 41 } 42 input_row += stride_h; 43 } 44 } 45 } 46 } 47 } 48 49 50 int main() 51 { 52 float* data_im; 53 int height=5; 54 int width=5; 55 int kernel_h=3; 56 int kernel_w=3; 57 int pad_h=1; 58 int pad_w=1; 59 int stride_h=1; 60 int stride_w=1; 61 int dilation_h=1; 62 int dilation_w=1; 63 float* data_col; 64 int channels =3; 65 const int output_h = (height + 2 * pad_h - 66 (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1; 67 const int output_w = (width + 2 * pad_w - 68 (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1; 69 data_im = new float[channels*height*width]; 70 data_col = new float[channels*output_h*output_w*kernel_h*kernel_w]; 71 72 //init input image data 73 for(int m=0;m<channels;++m) 74 { 75 for(int i=0;i<height;++i) 76 { 77 for(int j=0;j<width;++j) 78 { 79 data_im[m*width*height+i*width+j] = m*width*height+ i*width +j; 80 cout <<data_im[m*width*height+i*width+j] <<‘ ‘; 81 } 82 cout <<endl; 83 } 84 } 85 86 im2col_cpu(data_im, channels, 87 height,width, kernel_h, kernel_w, 88 pad_h, pad_w, 89 stride_h, stride_w, 90 dilation_h, dilation_w, 91 data_col); 92 cout <<channels<<endl; 93 cout <<output_h<<endl; 94 cout <<output_w<<endl; 95 cout <<kernel_h<<endl; 96 cout <<kernel_w<<endl; 97 // cout <<"error"<<endl; 98 for(int i=0;i<kernel_w*kernel_h*channels;++i) 99 { 100 for(int j=0;j<output_w*output_h;++j) 101 { 102 cout <<data_col[i*output_w*output_h+j]<<‘ ‘; 103 } 104 cout <<endl; 105 } 106 107 return 0; 108 }
多通道卷积的图像别人已经给过很多了,大家可以搜到的基本都来自于一篇。这里附上一个我自己的理解过程,和程序的输出是完全一致的
原文地址:https://www.cnblogs.com/jourluohua/p/9735897.html
时间: 2024-10-19 09:55:33