高斯消元 求整数解模版

#include <iostream>
#include <string.h>
#include <cmath>
using namespace std;
const int maxn = 105;
int equ, var; // 有equ个方程,var个变元。增广阵行数为equ, 分别为0到equ - 1,列数为var + 1,分别为0到var.
int a[maxn][maxn];
int x[maxn]; // 解集.
bool free_x[maxn]; // 判断是否是不确定的变元.
int free_num;

void Debug(void){
    int i, j;
    for (i = 0; i < equ; i++)
    {
        for (j = 0; j < var + 1; j++)
        {
            cout << a[i][j] << " ";
        }
        cout << endl;
    }
    cout << endl;
}
//------------------------------------
inline int gcd(int a, int b){
    int t;
    while (b != 0)
    {
        t = b;
        b = a % b;
        a = t;
    }
    return a;
}

inline int lcm(int a, int b){    return a * b / gcd(a, b);}
// 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
int Gauss(void){
    int i, j, k;
    int max_r; // 当前这列绝对值最大的行.
         int col; // 当前处理的列.
    int ta, tb, LCM, temp, free_x_num, free_index;
    // 转换为阶梯阵.
    col = 0; // 当前处理的列.
    for (k = 0; k < equ && col < var; k++, col++)
    { // 枚举当前处理的行.
        // 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
        max_r = k;
        for (i = k + 1; i < equ; i++)
        {
            if (abs(a[i][col]) > abs(a[max_r][col])) max_r = i;
        }
        if (max_r != k)
        { // 与第k行交换.
            for (j = k; j < var + 1; j++) swap(a[k][j], a[max_r][j]);
        }
        if (a[k][col] == 0)

        { // 说明该col列第k行以下全是0了,则处理当前行的下一列.
            k--; continue;
        }

        for (i = k + 1; i < equ; i++)
        { // 枚举要删去的行.
            if (a[i][col] != 0)
            {
                LCM = lcm(abs(a[i][col]), abs(a[k][col]));
                ta = LCM / abs(a[i][col]), tb = LCM / abs(a[k][col]);
                if (a[i][col] * a[k][col] < 0) tb = -tb; // 异号的情况是两个数相加.
                for (j = col; j < var + 1; j++)
                {
                    a[i][j] = a[i][j] * ta - a[k][j] * tb;
                }
            }
        }
    }
    Debug();
    // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
    for (i = k; i < equ; i++)
    { // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
        if (a[i][col] != 0) return -1;
    }
    // 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.
    // 且出现的行数即为自由变元的个数.
    if (k < var)
    {
        // 首先,自由变元有var - k个,即不确定的变元至少有var - k个.
        for (i = k - 1; i >= 0; i--)
        {
            // 第i行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第k行到第equ行.

            // 同样,第i行一定不会是(0, 0, ..., a), a != 0的情况,这样的无解的.

            free_x_num = 0; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.

            for (j = 0; j < var; j++)
                if (a[i][j] != 0 && free_x[j]) free_x_num++, free_index = j;

            if (free_x_num > 1) continue; // 无法求解出确定的变元.
            // 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.
            temp = a[i][var];
            for (j = 0; j < var; j++)
                if (a[i][j] != 0 && j != free_index) temp -= a[i][j] * x[j];
            x[free_index] = temp / a[i][free_index]; // 求出该变元.
            free_x[free_index] = 0; // 该变元是确定的.
        }
        return var - k; // 自由变元有var - k个.
    }

    // 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.

    // 计算出Xn-1, Xn-2 ... X0.

    for (i = var - 1; i >= 0; i--)
    {
        temp = a[i][var];
        for (j = i + 1; j < var; j++)
            if (a[i][j] != 0) temp -= a[i][j] * x[j];
        if (temp % a[i][i] != 0) return -2; // 说明有浮点数解,但无整数解.
        x[i] = temp / a[i][i];
    }
    return 0;
}
int main()
{
    int i, j;
    while (~scanf("%d %d", &equ, &var))    {
        memset(a, 0, sizeof(a));
        memset(x, 0, sizeof(x));
        memset(free_x, 1, sizeof(free_x)); // 一开始全是不确定的变元.
        for (i = 0; i < equ; i++)
        {
            for (j = 0; j < var + 1; j++)
            {
                scanf("%d", &a[i][j]);
            }
        }
//        Debug();
        free_num = Gauss();
        if (free_num == -1) printf("无解!\n");
   else if (free_num == -2) printf("有浮点数解,无整数解!\n");
        else if (free_num > 0)
        {
            printf("无穷多解! 自由变元个数为%d\n", free_num);
            for (i = 0; i < var; i++)
            {
                if (free_x[i]) printf("x%d 是不确定的\n", i + 1);
                else printf("x%d: %d\n", i + 1, x[i]);
            }
        }
        else
        {
            for (i = 0; i < var; i++)
            {
                printf("x%d: %d\n", i + 1, x[i]);
            }
        }
        printf("\n");
    }
    return 0;
}

高斯消元 求整数解模版,布布扣,bubuko.com

时间: 2024-10-13 18:36:25

高斯消元 求整数解模版的相关文章

HDU4870_Rating_双号从零单排_高斯消元求期望

原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4870 原题: Rating Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 654    Accepted Submission(s): 415 Special Judge Problem Description A little gir

hdu 2262 高斯消元求期望

Where is the canteen Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 1070    Accepted Submission(s): 298 Problem Description After a long drastic struggle with himself, LL decide to go for some

hdu 3992 AC自动机上的高斯消元求期望

Crazy Typewriter Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 391    Accepted Submission(s): 109 Problem Description There was a crazy typewriter before. When the writer is not very sober, it

hdu 4418 高斯消元求期望

Time travel Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1480    Accepted Submission(s): 327 Problem Description Agent K is one of the greatest agents in a secret organization called Men in B

uva 10828 高斯消元求数学期望

Back to Kernighan-RitchieInput: Standard Input Output: Standard Output You must have heard the name of Kernighan and Ritchie, the authors of The C Programming Language. While coding in C, we use different control statements and loops, such as, if-the

【bzoj2460】[BeiJing2011]元素 贪心+高斯消元求线性基

题目描述 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法杖的法力取决于使用的矿石.一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制出法杖,这个现象被称为“魔法抵消” .特别地,如果在炼制过程中使用超过一块同一种矿石,那么一定会发生“魔法抵消”. 后来,随着人们认知水平的提高,这个现象得到了很好的解释.经过了大量的实验后,著名法师 D

【bzoj4269】再见Xor 高斯消元求线性基

题目描述 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. 输入 第一行一个正整数N. 接下来一行N个非负整数. 输出 一行,包含两个数,最大值和次大值. 样例输入 3 3 5 6 样例输出 6 5 题解 高斯消元求线性基裸题 由于线性基可以表示所有能够求出的异或和,所以我们只需要考虑线性基即可. 先求出线性基,然后按照从高位到低位的贪心思想来选择. 由于每个线性基的最高位在之前都没有出现过,所以每次选择一定会使答案增大,故直接

【bzoj4004】[JLOI2015]装备购买 贪心+高斯消元求线性基

题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽量多的装备.对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件装备就没有买的必要了.严格的定义是,如果脸哥买了 zi1,...

Light OJ 1288 Subsets Forming Perfect Squares 高斯消元求矩阵的秩

题目来源:Light OJ 1288 Subsets Forming Perfect Squares 题意:给你n个数 选出一些数 他们的乘积是完全平方数 求有多少种方案 思路:每个数分解因子 每隔数可以选也可以不选 0 1表示 然后设有m种素数因子 选出的数组成的各个因子的数量必须是偶数 组成一个m行和n列的矩阵 每一行代表每一种因子的系数 解出自由元的数量 #include <cstdio> #include <cstring> #include <algorithm&g