一,线性探測法 核心:冲突的时候线性的向下寻找可用空间; 缺点:对同一散列地址的争夺现象会出现堆积; 二,二次探測法 核心:冲突的时候探測以下的+_k^2; 缺点:不易探測到整个散列表的全部空间; 三,链地址法 同一地址放置一条链 时间: 2024-10-13 05:35:26
/*闭散列表的建立.查找.插入.删除*/ #include <stdio.h> #define NIL -1 //假设关键字为非负整数 #define DEL -2 typedef int KeyType; KeyType HashTable[13]; //便于验证算法,关键字个数假定为不超过13,哈希表长定为13 //关键字插入函数 void InsertHashTable(KeyType k) { for(int i=0; i<13; i++) if( NIL == HashTabl
哈希表/散列表,是根据关键字(key)直接访问在内存存储位置的数据结构. 构造哈希表的常用方法: 直接地址法---取关键字的某个线性函数为散列地址,Hash(Key) = Key或Hash(key) = A*Key + B, A,B为常数. 除留余数法---取关键值被某个不大于散列表长m的数p除后的所得的余数为散列地址. Hash(key) = key % p. 若采用直接地址法(Hash(Key) = Key)存在一定的缺陷. 当Key值特别大时,而Key之前的数很少,就会造成空间浪费.大多时
散列表的实现常常叫做散列(hashing).散列仅支持INSERT,SEARCH和DELETE操作,都是在常数平均时间执行的.需要元素间任何排序信息的操作将不会得到有效的支持. 散列表是普通数组概念的推广.如果空间允许,可以提供一个数组,为每个可能的关键字保留一个位置,就可以运用直接寻址技术. 当实际存储的关键字比可能的关键字总数较小时,采用散列表就比较直接寻址更为有效.在散列表中,不是直接把关键字用作数组下标,而是根据关键字计算出下标,这种 关键字与下标之间的映射就叫做散列函数. 1.散列函数
散列表的基本思想通过键来直接计算出数据的存放地址,而避免了数组或者其他数据结构的逐个比较查找. 可以在常数时间内实现查找.插入和删除操作,代价是不支持任何有关排序的操作. 键到地址的映射,称作散列函数.散列函数需要满足两个要求:计算简单:冲突少. 不同的情况,可以有不同的散列函数,在此不对散列函数做过多介绍. 冲突:相同的键,通过散列函数,被映射到了相同的地址.下面主要介绍下解决冲突的一些简单方法. 分离链表法:把散列到同一个地址的数据保存在一个链表中.在查询数据时,先通过散列函数求出链表地址,
散列 散列表的一般实现叫散列.是一种以常数平均时间执行插入.删除.查找的技术.理想的散列表结构是一个包含关键字具有固定大小的数组.典型情况是,一个关键字就是一个带有相关值的字符串.把表大小记MaxSize,通常使表在0-MaxSize之间变化.每个关键字都被映射到0-MaxSize之间的某个单元中.这个映射关系就是散列函数.理想情况函数保证任何关键字都映射到不同单元里,实践是不可能的.因数组有限大小,而关键字可无限多.因此要找德散列函数尽可能的使关键字均匀的分布在单元中.如图 git在0号单元,
散列表 散列表插入分两步: 1. 根据散列函数找到索引 2. 处理索引冲突情况:拉链法和线性探测法 散列表是时间上和空间上作出权衡的一个例子.散列表采用函数映射找索引,查找很快,但是键的顺序信息不会保存(HashSet HashMap的本质) 散列函数 对于每种类型的键我们都学要一个与之对应的散列函数 正整数散列: 常用取余散列:k%M 浮点数散列: 例如0-1之间可以乘以一个M得到0-M-1之前的索引值,但是高位影响比低位大(0.12的1比2的影响更大,不符合均匀性),所以可以将键表示为二进制
更多的理论细节可以用<数据结构>严蔚敏 看几遍,数据结构很重要是实现算法的很大一部分 下面主要谈谈python什么实现 10.1 栈和队列 栈:后进先出LIFO 队列:先进先出FIFO python 中使用list实现在这些功能 栈:压栈 append() 退栈 pop() 队列: 入队 append() 出队 pop(0) 栈: >>> stack = list() >>> stack.append(3) >>> stack.ap
一.基本概念 散列技术:在记录的存储位置和它的关键字之间建立一个确定的对应关系f,使得每个关键字key对应一个存储位置f(key). f:散列函数/哈希函数: 采用散列技术将记录存储在一块连续的存储空间中,这块连续存储空间称为散列表或哈希表. 关键字对应的记录存储位置称为散列地址. 散列技术既是一种存储方法,也是一种查找方法. 散列技术适合求解问题是查找与给定值相等的记录.查找速度快. 散列技术不适合范围查找,不适合查找同样关键字的记录,不适合获取记录的排序,最值. 冲突:关键字key1不等于k
目录 引言 直接寻址 散列寻址 散列函数 除法散列 乘法散列 全域散列 完全散列 碰撞处理方法 链表法 开放寻址法 线性探查 二次探查 双重散列 随机散列 再散列问题 完整源码(C++) 参考资料 内容 1.引言 如果想在一个n个元素的列表中,查询元素x是否存在于列表中,首先想到的就是从头到尾遍历一遍列表,逐个进行比较,这种方法效率是Θ(n):当然,如果列表是已经排好序的话,可以采用二分查找算法进行查找,这时效率提升到Θ(logn); 本文中,我们介绍散列表(HashTable),能使查找效率