KMP算法的定义及KMP练手题 HDU 1711 Number Sequence (我的模板代码)

题意:就是要你来找出b数组在a数组中最先匹配的位置,如果没有则输出-1

思路:直接KMP算法(算法具体思想这位牛写的不错http://blog.csdn.net/v_july_v/article/details/7041827)

AC代码:

#include<cstdio>
#include<cstring>
#include<stdlib.h>
#include<iostream>
using namespace std;
#define maxn  1000005
int b[10005];
int a[maxn];
int next[maxn];
int n,m;
/*void GetNext()
{
    next[0] = -1;
    int k=-1;
    int j=0;
    while(j<m)
    {
        if (k==-1||b[j]==b[k])
        {
            ++k;
            ++j;
            next[j]=k;
        }
        else
        {
            k=next[k];
        }
    }
}*/
void GetNext()
{
    next[0] = -1;
    int k=-1;
    int j=0;
    while (j<m)
    {
        if (k==-1||b[j]==b[k])
        {
            ++j;
            ++k;
            if (b[j]!=b[k])
                next[j] = k;
            else
                next[j] = next[k];
        }
        else
        {
            k=next[k];
        }
    }
}
int KmpSearch()
{
    int i=0,j=0;
    while(i<n&& j <m)
    {
        if (j==-1||a[i]==b[j])
        {
            i++;
            j++;
        }
        else
            j=next[j];
    }
    if(j==m)
        return i-j+1;
    else
        return -1;
}
int main()
{
    int i,j,t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d %d",&n,&m);
        for(i=0;i<n;i++)
            scanf("%d",&a[i]);
        for(i=0;i<m;i++)
            scanf("%d",&b[i]);
        GetNext();
        printf("%d\n",KmpSearch());
    }
    return 0;
}

KMP算法的定义及KMP练手题 HDU 1711 Number Sequence (我的模板代码),布布扣,bubuko.com

时间: 2024-10-25 19:40:32

KMP算法的定义及KMP练手题 HDU 1711 Number Sequence (我的模板代码)的相关文章

hdu 1711 Number Sequence(KMP)

# include <stdio.h> # include <string.h> # include <algorithm> using namespace std; int n,m,next[10010],a[1000010],b[10010]; void Getnext() { int i=0,j=-1; next[0]=-1; while(i<m) { if(j==-1||b[i]==b[j]) i++,j++,next[i]=j; else j=next[

HDU 1711 Number Sequence KMP题解

KMP查找整数数列,不是查找字符串. 原理是一样的,不过把字符串转换为数列,其他基本上是一样的. #include <stdio.h> #include <string.h> const int MAX_N = 1000001; const int MAX_M = 10001; int strN[MAX_N], strM[MAX_M], next[MAX_M], N, M; void getNext() { memset(next, 0, sizeof(int) * M); for

HDU 1711 Number Sequence(KMP算法)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1711 Number Sequence Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 15548    Accepted Submission(s): 6836 Problem Description Given two sequence

HDU 1711 Number Sequence 【KMP应用 求成功匹配子串的最小下标】

传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1711 Number Sequence Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 42917    Accepted Submission(s): 17715 Problem Description Given two sequences

HDU 1711 Number Sequence(KMP模板)

Problem Description: Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1]

hdu 1711 Number Sequence KMP 基础题

Number Sequence Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 11691    Accepted Submission(s): 5336 Problem Description Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1],

HDU 1711 Number Sequence (简单KMP)

#include <stdio.h> #include <string.h> int next[10005]; int str1[1000005],str2[10005]; void build_next(int len2) { int i=0,j=-1; next[0] = -1; while (i < len2) { if (j==-1 || str2[i] == str2[j]) { i++; j++; if (str2[i] != str2[j]) { next[i]

(KMP 1.1)hdu 1711 Number Sequence(KMP的简单应用——求pattern在text中第一次出现的位置)

题目: Number Sequence Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 12902    Accepted Submission(s): 5845 Problem Description Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1

HDU 1711 Number Sequence(kmp)

Problem Description Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1]