poj1704 Georgia and Bob(阶梯博弈)


Georgia and Bob

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 9291   Accepted: 3021

Description

Georgia and Bob decide to play a self-invented game. They draw a row of grids on paper, number the grids from left to right by 1, 2, 3, ..., and place N chessmen on different grids, as shown in the following figure for example:

Georgia and Bob move the chessmen in turn. Every time a player will choose a chessman, and move it to the left without going over any other chessmen or across the left edge. The player can freely choose number of steps the chessman moves, with the constraint
that the chessman must be moved at least ONE step and one grid can at most contains ONE single chessman. The player who cannot make a move loses the game.

Georgia always plays first since "Lady first". Suppose that Georgia and Bob both do their best in the game, i.e., if one of them knows a way to win the game, he or she will be able to carry it out.

Given the initial positions of the n chessmen, can you predict who will finally win the game?

Input

The first line of the input contains a single integer T (1 <= T <= 20), the number of test cases. Then T cases follow. Each test case contains two lines. The first line consists of one integer N (1 <= N <= 1000), indicating the number of chessmen. The second
line contains N different integers P1, P2 ... Pn (1 <= Pi <= 10000), which are the initial positions of the n chessmen.

Output

For each test case, prints a single line, "Georgia will win", if Georgia will win the game; "Bob will win", if Bob will win the game; otherwise ‘Not sure‘.

Sample Input

2
3
1 2 3
8
1 5 6 7 9 12 14 17

Sample Output

Bob will win
Georgia will win

Source

POJ Monthly--2004.07.18

【题意】

从左到右有一排石子,给出石子所在的位置。规定每个石子只能向左移动,且不能跨过前面的石子。最左边的石子最多只能移动到1位置。每次选择一个石子按规则向左移动,问先手是否能赢。

【分析】

我们把棋子按位置升序排列后,从后往前把他们两两绑定成一对。如果总个数是奇数,就把最前面一个和边界(位置为0)绑定。

在同一对棋子中,如果对手移动前一个,你总能对后一个移动相同的步数,所以一对棋子的前一个和前一对棋子的后一个之间有多少个空位置对最终的结果是没有影响的。

于是我们只需要考虑同一对的两个棋子之间有多少空位。

这样一来就成了N堆取石子游戏了.

Ps:对于阶梯博弈,我的理解就是,两两抱团,奇数就把第一个单独提出,其余的两两抱团,再来做nim。

#pragma comment(linker, "/STACK:102400000,102400000")
#include <iostream>
#include <cstdio>
#include <cstring>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std;
const double eps = 1e-6;
const double pi = acos(-1.0);
const int INF = 1e9;
const int MOD = 1e9+7;
#define ll long long
#define CL(a,b) memset(a,b,sizeof(a))
#define lson (i<<1)
#define rson ((i<<1)|1)
#define N 50010
int gcd(int a,int b){return b?gcd(b,a%b):a;}

int n,k;
int s[1010];

int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        for(int i=1; i<=n; i++)
            scanf("%d",&s[i]);
        sort(s+1, s+n+1);
        int ans;
        if(n%2 == 0)
        {
            ans = s[2]-s[1]-1;
            for(int i=4; i<=n; i+=2) ans ^= (s[i]-s[i-1]-1);
            if(ans == 0) cout<<"Bob will win"<<endl;
            else cout<<"Georgia will win"<<endl;
        }
        else
        {
            ans = s[1]-1;
            for(int i=3; i<=n; i+=2) ans ^= (s[i]-s[i-1]-1);
            if(ans == 0) cout<<"Bob will win"<<endl;
            else cout<<"Georgia will win"<<endl;
        }
    }
    return 0;
}
时间: 2024-10-10 16:32:14

poj1704 Georgia and Bob(阶梯博弈)的相关文章

POJ1704 Georgia and Bob (阶梯博弈)

Georgia and Bob Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %I64d & %I64u Submit Status Description Georgia and Bob decide to play a self-invented game. They draw a row of grids on paper, number the grids from left to right by 1, 2,

POJ 1704 Georgia and Bob(阶梯博弈)

Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11357   Accepted: 3749 Description Georgia and Bob decide to play a self-invented game. They draw a row of grids on paper, number the grids from left to right by 1, 2, 3, ..., and place N c

POJ1704 Georgia and Bob 题解

阶梯博弈的变形.不知道的话还是一道挺神的题. 将所有的棋子两两绑在一起,对于奇数个棋子的情况,将其与起点看作一组.于是便可以将一组棋子的中间格子数看作一推石子.对靠右棋子的操作是取石子,而对左棋子的操作并不会对游戏造成影响,考虑如果在 NIM 博弈时有增加石子的操作,那么下一步另一个人就可以去相同数量的石子,于是局面并没有改变. 然后就来一发异或和就行了. #include <bits/stdc++.h> using namespace std; int n,a[10005]; int mai

[POJ1704]Georgia and Bob

Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8552   Accepted: 2704 Description Georgia and Bob decide to play a self-invented game. They draw a row of grids on paper, number the grids from left to right by 1, 2, 3, ..., and place N ch

POJ 1704 Georgia and Bob [阶梯Nim]

题意: 每次可以向左移动一个棋子任意步,不能跨过棋子 很巧妙的转化,把棋子间的空隙看成石子堆 然后裸阶梯Nim #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; typedef long long ll; const int N=1005; inline int re

$POJ1704\ Georgia\ and\ Bob$ 博弈论

正解:博弈论 解题报告: 传送门! 啊先放下翻译趴$QwQ$大概就是说,有一行$1\cdot n$的网格,每次可以向左移动若干步,不能越过前面已有棋子的格子就是了,然后谁不能动就输了,问最后是先手必胜还是后手必胜 然后这就是个阶梯游戏的变式昂$QwQ$ 首先可以发现,当移动一个棋子的时候,相当于和后面那个棋子的距离变大,然后和前面那个棋子的距离变小,而且总量依然是不变的 于是考虑将所有棋子按升序排列,不难发现这题就变成了一个阶梯游戏?就因为只考虑间距,那每次移动都相当于是有一个减小了然后相邻那个

POJ 1704 Georgia and Bob(阶梯博弈+证明)

POJ 1704 题目链接 关于阶梯博弈有如下定理: 将所有奇数阶梯看作n堆石头,做Nim,将石头从奇数堆移动到偶数堆看作取走石头,同样地,异或值不为0(利己态)时,先手必胜. 定理证明看此博:http://blog.csdn.net/kk303/article/details/6692506 以下是POJ 1704的AC代码: //棋子只能往左走(最左有界线),可以走任意多格(>=1) //而且棋子不能越过在它前面的棋子(它左边的棋子) //每个格最多放一个棋子,说明棋子也不能走到另一个棋子所

poj 1704 Georgia and Bob(阶梯博弈)

Georgia and Bob Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8656   Accepted: 2751 Description Georgia and Bob decide to play a self-invented game. They draw a row of grids on paper, number the grids from left to right by 1, 2, 3, ...

POJ 1704 Georgia and Bob(阶梯博弈)题解

题意:有一个一维棋盘,有格子标号1,2,3,......有n个棋子放在一些格子上,两人博弈,只能将棋子向左移,不能和其他棋子重叠,也不能跨越其他棋子,不能超越边界,不能走的人输 思路:可以用阶梯博弈来做. 那么先简单讲一下阶梯博弈: 有一个x阶阶梯,每一阶都有一定数量的石头,每次只能把某一阶梯上任意数量(不为0)的石头往下移动一阶,最多只能移动到地面,不能移动的败.这里先手的策略是这样:对奇数阶阶梯的石子进行Nim博弈,异或和为0必败.为什么不用考虑偶数呢?因为如果后手的人把m颗石头从2*n阶移