建议在Windows 下开发,成本低廉,简单,效率高。
综合下:开发的程序,Python Django (Mysql,PostgreSQL) Nginx Redis ,这一组组合可以适应不同的平台,Linux 或者 Windows Server 下。。
Python版本:
推荐2.X系列,2.7是用的较多的。3.0N多不兼容。。。。想尝鲜的,呵呵呵呵
Windows-->Visual Studio2013 +PTVS2.2
Mac -->Xcode
Linux -->vi pycharm ......呵呵呵呵
也有用Pycharm 或者Eclipse的,亲身试试就知道那款合适了。不做比较。
小贴士:SharpDevelop_3.1。。。。。用这个来进行C# 项目代码的转化,你懂得。。。。
Web 框架:Django,Web.py 其他不考虑呵呵呵,你懂
数据库:Mysql Pgsql (Sqlite 额太mini,袖珍。Oracle 略贵 SqlServer 额,仅Windows.................MonoDB Nosql 等等等,争议太多,不要图新鲜,做试验品)
缓存:Memcached 或者Redis
Server:Nginx -->OpenResty
OpenResty - a fast web app server by extending nginx
、Tornado、Apache
前端:Jquery、 bootstrap、 kando
源码管理:vs 的 直接TFS,也可换成git
ORM工具:Django自带的或者 SQLAlchemy
序列化争议:
pickle和cPickle:Python对象的序列化(上)
pickle和cPickle:Python对象的序列化(下)
JianZhen 275 1月17日 发布
- 推荐 1 推荐
- 收藏 4 收藏,2k 浏览
目的:Python对象序列化
可用性:pickle至少1.4版本,cPickle 1.5版本以上
pickle
模块实现了一种算法,将任意一个Python对象转化成一系列字节(byets)。此过程也调用了serializing
对象。代表对象的字节流之后可以被传输或存储,再重构后创建一个拥有相同特征(the same characteristics)的新的对象。
cPickle
使用C而不是Python,实现了相同的算法。这比Python实现要快好几倍,但是它不允许用户从Pickle派生子类。如果子类对你的使用来说无关紧要,那么cPickle是个更好的选择。
警告:本文档直接说明,pickle不提供安全保证。如果你在多线程通信(inter-process communication)或者数据存储或存储数据中使用pickle,一定要小心。请勿信任你不能确定为安全的数据。
导入
如平常一样,尝试导入cPickle,给它赋予一个别名“pickle”。如果因为某些原因导入失败,退而求其次到Python的原生(native)实现pickle模块。如果cPickle可用,能给你提供一个更快速的执行,否则只能是轻便的执行(the portable implementation)。
try:
import cPickle as pickle
except:
import pickle
编码和解码
第一个例子将一种数据结构编码成一个字符串,然后把该字符串打印至控制台。使用一种包含所有原生类型(native types)的数据结构。任何类型的实例都可被腌渍(pickled,译者注:模块名称pickle的中文含义为腌菜),在稍后的例子中会演示。使用pickle.dumps()
来创建一个表示该对象值的字符串。
try:
import cPickle as pickle
except:
import pickle
import pprint
data = [ { ‘a‘:‘A‘, ‘b‘:2, ‘c‘:3.0 } ]
print ‘DATA:‘,
pprint.pprint(data)
data_string = pickle.dumps(data)
print ‘PICKLE:‘, data_string
pickle默认仅由ASCII字符组成。也可以使用更高效的二进制格式(binary format),只是因为在打印的时候更易于理解,本页的所有例子都使用ASCII输出。
$ python pickle_string.py
DATA:[{‘a‘: ‘A‘, ‘b‘: 2, ‘c‘: 3.0}]
PICKLE: (lp1
(dp2
S‘a‘
S‘A‘
sS‘c‘
F3
sS‘b‘
I2
sa.
数据被序列化以后,你可以将它们写入文件、套接字、管道等等中。之后你也可以从文件中读取出来、将它反腌渍(unpickled)而构造一个具有相同值得新对象。
try:
import cPickle as pickle
except:
import pickle
import pprint
data1 = [ { ‘a‘:‘A‘, ‘b‘:2, ‘c‘:3.0 } ]
print ‘BEFORE:‘,
pprint.pprint(data1)
data1_string = pickle.dumps(data1)
data2 = pickle.loads(data1_string)
print ‘AFTER:‘,
pprint.pprint(data2)
print ‘SAME?:‘, (data1 is data2)
print ‘EQUAL?:‘, (data1 == data2)
如你所见,这个新构造的对象与原对象相同,但并非同一对象。这不足为奇。
$ python pickle_unpickle.py
BEFORE:[{‘a‘: ‘A‘, ‘b‘: 2, ‘c‘: 3.0}]
AFTER:[{‘a‘: ‘A‘, ‘b‘: 2, ‘c‘: 3.0}]
SAME?: False
EQUAL?: True
与流一起工作
除dumps()
和loads()
外,pickle还提供一对用在类文件流(file-like streams)的转化函数。可以往一个流中写对个对象,然后从流中把它们读取出来,此过程不需要预先写入的对象有几个、它们多大。
try:
import cPickle as pickle
except:
import pickle
import pprint
from StringIO import StringIO
class SimpleObject(object):
def __init__(self, name):
self.name = name
l = list(name)
l.reverse()
self.name_backwards = ‘‘.join(l)
return
data = []
data.append(SimpleObject(‘pickle‘))
data.append(SimpleObject(‘cPickle‘))
data.append(SimpleObject(‘last‘))
# 使用StringIO模拟一个文件
out_s = StringIO()
# 写入该流
for o in data:
print ‘WRITING: %s (%s)‘ % (o.name, o.name_backwards)
pickle.dump(o, out_s)
out_s.flush()
# 建立一个可读流
in_s = StringIO(out_s.getvalue())
# 读数据
while True:
try:
o = pickle.load(in_s)
except EOFError:
break
else:
print ‘READ: %s (%s)‘ % (o.name, o.name_backwards)
这个例子使用SringIO缓存器(buffer)模拟流,所以在建立可读流的时候我们玩了一把。一个简单数据库的格式化也可以使用pickles来存储对象,只是shelve
与之工作更加简便。
$ python pickle_stream.py
WRITING: pickle (elkcip)
WRITING: cPickle (elkciPc)
WRITING: last (tsal)
READ: pickle (elkcip)
READ: cPickle (elkciPc)
READ: last (tsal)
除了存储数据,pickles在进程间通信(inter-process communication)中也非常称手。例如,使用os.fork()
和os.pipe()
可以创立工作者进程(worker processes),从一个管道(pipe)读取作业指令(job instruction)然后将结果写入另一个管道。管理工作者池(worker pool)和将作业送入、接受响应(response)的核心代码可被重用,因为作业和响应并不属于某个特定类中。如果你使用管道或者套接字(sockets),在通过连至另一端(end)的连接倾倒(dumps)所有对象、推送数据之后,别忘了冲洗(flush)。如果你想写自己的工作者池管理器,请看multiprocessing
。
原文:pickle and cPickle – Python object serialization - Python Module of the Week 的前半部分
pickle和cPickle:Python对象的序列化(下)
JianZhen 275 1月22日 发布
- 推荐 0 推荐
- 收藏 2 收藏,474 浏览
重构对象的问题
当与你自己的类一起工作时,你必须保证类被腌渍出现在读取pickle的进程的命名空间中。只有该实例的数据而不是类定义被腌渍。类名被用于在反腌渍时,找到构造器(constructor)以创建新对象。以此——往一个文件写入一个类的实例为例:
try:
import cPickle as pickle
except:
import pickle
import sys
class SimpleObject(object):
def __init__(self, name):
self.name = name
l = list(name)
l.reverse()
self.name_backwards = ‘‘.join(l)
return
if __name__ == ‘__main__‘:
data = []
data.append(SimpleObject(‘pickle‘))
data.append(SimpleObject(‘cPickle‘))
data.append(SimpleObject(‘last‘))
try:
filename = sys.argv[1]
except IndexError:
raise RuntimeError(‘Please specify a filename as an argument to %s‘ % sys.argv[0])
out_s = open(filename, ‘wb‘)
try:
# 写入流中
for o in data:
print ‘WRITING: %s (%s)‘ % (o.name, o.name_backwards)
pickle.dump(o, out_s)
finally:
out_s.close()
在运行时,该脚本创建一个以在命令行指定的参数为名的文件:
$ python pickle_dump_to_file_1.py test.dat
WRITING: pickle (elkcip)
WRITING: cPickle (elkciPc)
WRITING: last (tsal)
一个在读取结果腌渍对象失败的简化尝试:
try:
import cPickle as pickle
except:
import pickle
import pprint
from StringIO import StringIO
import sys
try:
filename = sys.argv[1]
except IndexError:
raise RuntimeError(‘Please specify a filename as an argument to %s‘ % sys.argv[0])
in_s = open(filename, ‘rb‘)
try:
# 读取数据
while True:
try:
o = pickle.load(in_s)
except EOFError:
break
else:
print ‘READ: %s (%s)‘ % (o.name, o.name_backwards)
finally:
in_s.close()
该版本失败的原因在于没有 SimpleObject 类可用:
$ python pickle_load_from_file_1.py test.dat
Traceback (most recent call last):
File "pickle_load_from_file_1.py", line 52, in <module>
o = pickle.load(in_s)
AttributeError: ‘module‘ object has no attribute ‘SimpleObject‘
正确的版本从原脚本中导入 SimpleObject ,可成功运行。
添加:
from pickle_dump_to_file_1 import SimpleObject
至导入列表的尾部,接着重新运行该脚本:
$ python pickle_load_from_file_2.py test.dat
READ: pickle (elkcip)
READ: cPickle (elkciPc)
READ: last (tsal)
当腌渍有值的数据类型不能被腌渍时(套接字、文件句柄(file handles)、数据库连接等之类的),有一些特别的考虑。因为使用值而不能被腌渍的类,可以定义 __getstate__()
和 __setstate__()
来返回状态(state)的一个子集,才能被腌渍。新式类(New-style classes)也可以定义__getnewargs__()
,该函数应当返回被传递至类内存分配器(the class memory allocator)(C.__new__()
)的参数。使用这些新特性的更多细节,包含在标准库文档中。
环形引用(Circular References)
pickle协议(pickle protocol)自动处理对象间的环形引用,因此,即使是很复杂的对象,你也不用特别为此做什么。考虑下面这个图:
上图虽然包括几个环形引用,但也能以正确的结构腌渍和重新读取(reloaded)。
import pickle
class Node(object):
"""
一个所有结点都可知它所连通的其它结点的简单有向图。
"""
def __init__(self, name):
self.name = name
self.connections = []
return
def add_edge(self, node):
"创建两个结点之间的一条边。"
self.connections.append(node)
return
def __iter__(self):
return iter(self.connections)
def preorder_traversal(root, seen=None, parent=None):
"""产生器(Generator )函数通过一个先根遍历(preorder traversal)生成(yield)边。"""
if seen is None:
seen = set()
yield (parent, root)
if root in seen:
return
seen.add(root)
for node in root:
for (parent, subnode) in preorder_traversal(node, seen, root):
yield (parent, subnode)
return
def show_edges(root):
"打印图中的所有边。"
for parent, child in preorder_traversal(root):
if not parent:
continue
print ‘%5s -> %2s (%s)‘ % (parent.name, child.name, id(child))
# 创建结点。
root = Node(‘root‘)
a = Node(‘a‘)
b = Node(‘b‘)
c = Node(‘c‘)
# 添加边。
root.add_edge(a)
root.add_edge(b)
a.add_edge(b)
b.add_edge(a)
b.add_edge(c)
a.add_edge(a)
print ‘ORIGINAL GRAPH:‘
show_edges(root)
# 腌渍和反腌渍该图来创建
# 一个结点集合。
dumped = pickle.dumps(root)
reloaded = pickle.loads(dumped)
print
print ‘RELOADED GRAPH:‘
show_edges(reloaded)
重新读取的诸多节点(译者注:对应图中的圆圈)不再是同一个对象,但是节点间的关系保持住了,而且读取的仅仅是带有多个引用的对象的一个拷贝。上面所说的可以通过测试各节点在pickle处理前和之后的id()
值来验证。
$ python pickle_cycle.py
ORIGINAL GRAPH:
root -> a (4299721744)
a -> b (4299721808)
b -> a (4299721744)
b -> c (4299721872)
a -> a (4299721744)
root -> b (4299721808)
RELOADED GRAPH:
root -> a (4299722000)
a -> b (4299722064)
b -> a (4299722000)
b -> c (4299722128)
a -> a (4299722000)
root -> b (4299722064)
原文 pickle and cPickle – Python object serialization - Python Module of the Week 的后半部分。