light oj 1095 组合数学

 1 #include <stdio.h>
 2 #include <string.h>
 3 #include <stdlib.h>
 4 #include <math.h>
 5 #include <iostream>
 6 #include <algorithm>
 7 #include <climits>
 8 #include <queue>
 9 #define ll long long
10
11 using namespace std;
12
13
14 const int MAX = 200005;
15 const ll MOD = 1e9+7;
16 ll F[1010],C[1010][1010];
17
18 void init()
19 {
20     F[0] = 1;
21     F[1] = 0;
22     F[2] = 1;
23     for(int i = 3; i <= 1000; i++)
24         F[i] = (i-1)*(F[i-1]+F[i-2])%MOD;
25
26     for(int i = 0; i <= 1000; i++)
27     {
28         for(int j = 0; j <= i; j++)
29         {
30             if(j == 0)
31                 C[i][j] = 1;
32             else
33                 C[i][j] = (C[i-1][j]+C[i-1][j-1])%MOD;
34         }
35     }
36 }
37
38 void solve()
39 {
40     int n,m,k;
41     scanf("%d %d %d",&n,&m,&k);
42     ll ans = 0;
43     for(int i = 0; i <= n-m; i++)
44     {
45         ans += (C[n-m][i]*F[n-k-i]);
46         ans %= MOD;
47     }
48     ans *= C[m][k];
49     ans %= MOD;
50     printf("%lld\n",ans);
51 }
52
53 int main(void)
54 {
55     init();
56     int t,cnt = 0;
57     scanf("%d",&t);
58     while(t--)
59     {
60         printf("Case %d: ",++cnt);
61         solve();
62     }
63     return 0;
64 }
时间: 2025-01-01 12:31:52

light oj 1095 组合数学的相关文章

Light oj 1095 - Arrange the Numbers (组合数学+递推)

题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1095 题意: 给你包含1~n的排列,初始位置1,2,3...,n,问你刚好固定前m个数中的k个数的位置,问你有多少中排列方案.(比如5 3 2有1 4 3 2 5这种方案,1和3固定了) 思路: 前m个取k个就是C(m, k)个方案.然后就是类似错排的思想,设dp[i]为i个数在初始位置各不相同.其中的组合数用逆元算出. ans = dp[m - k] * C(n - m,

Light OJ 1095

题意: 给你 N 个数, 总共有 N! 种排列, 现在 要你统计前 M 个数 刚好 有K 个数 在原来的位置上 的排列个数 思路: 首先 M 中选 K C(m,k): 则 共 剩下 n - k 个数, 而 n-m 个数中可以允许有数在原来的位置: 故 枚举 n-m 中有多少个数 在原来的位置上, 剩下的 n - k - i 个数 就是一个错排列了 (错排列 : D[i] = (i-1) * (D[i-1] + D[i-2] ) ; ) #include<bits/stdc++.h> using

Light OJ 1095 Arrange the Numbers

给定n,m,k,要求在n的全排列中,前m个数字中恰好有k个位置不变,有几种方案?首先,前m个中k个不变,那就是C(m,k),然后利用容斥原理可得 ans=ΣC(m,k)*(-1)^i*C(m-k,i)*(n-k-i)! (0<=i<=m-k) 1 #include<algorithm> 2 #include<cstdio> 3 #include<cmath> 4 #include<cstring> 5 #include<iostream&g

light oj 1236 【大数分解】

给定一个大数,分解质因数,每个质因子的个数为e1,e2,e3,--em, 则结果为((1+2*e1)*(1+2*e2)--(1+2*em)+1)/2. //light oj 1236 大数分解素因子 #include <stdio.h> #include <iostream> #include <string.h> #include <algorithm> #include <math.h> #include <ctype.h> #i

[2016-04-21][light]OJ[1234][Harmonic Number]

时间:2016-04-21 22:18:26 星期四 题目编号:[2016-04-21][light]OJ[1234][Harmonic Number] 题目大意:求∑nk=11kn∈(1,108),精确到10?8求∑k=1n1kn∈(1,108),精确到10?8 分析: 想法是打表,然后输出,但是直接打表会爆内存 解决办法,就是每隔100个来打表,节省1100的空间,然后从那个值开始计算到当前值解决办法,就是每隔100个来打表,节省1100的空间,然后从那个值开始计算到当前值 对应的整百就是n

Light OJ 1411 Rip Van Winkle`s Code 线段树成段更新

题目来源:Light OJ 1411 Rip Van Winkle`s Code 题意:3中操作 1种查询 求区间和 其中每次可以把一段区间从左到右加上1,2,3,...或者从右到左加上...3,2,1 或者把某个区间的数都置为v 思路:我是加了6个域 add是这段区间每个数都要加上add  add是这么来的 对与123456...这个等差数列 可能要分为2个区间 那么我就分成123和123 两个右边的等差数列每个数还应该加上3 所以右区间add加3 v是这个区间都要置为v 他的优先级最高 b是

Light OJ 1168 Wishing Snake 强连通缩点+哈密顿通路

题目来源:Light OJ 1168 Wishing Snake 题意:有点难看懂题意 看了一个小时再加别人的代码才懂意思 从0开始 输入的那些每一对u v 都要经过 就是从0到到达那些点 思路:首先缩点 每一个强连通分量里面的点都是可达的 缩点后的图是有向无环图 如果从0这个强连通分量可以出去到2个强连通分量 那么这两个强连通分量是不可能相互可达 所以可行的方案就是所有的强连通分量连成一线 一个一个串起来 除了第一个 出度是1入度是0和最后一个出度是0入度是1 其他都是入度等于出度是1 特判只

Jan&#39;s light oj 01--二分搜索篇

碰到的一般题型:1.准确值二分查找,或者三分查找(类似二次函数的模型). 2.与计算几何相结合答案精度要求比较高的二分查找,有时与圆有关系时需要用到反三角函数利用 角度解题. 3.不好直接求解的一类计数问题,利用二分直接枚举可能的结果,再检查是否符合题目要求. 4.区间求解,即利用两次二分分别查找有序序列左右上下限,再求差算出总个数. 题型知识补充: 1. 三分的一般写法: 1 double thfind(double left,double right) 2 { 3 double midmid

light oj 1422 - Halloween Costumes (区间dp)

1422 - Halloween Costumes PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB Gappu has a very busy weekend ahead of him. Because, next weekend is Halloween, and he is planning to attend as many parties as he can. Since it's Ha