特征点检测
目标
在本教程中,我们将涉及:
- 使用 FeatureDetector 接口来发现感兴趣点。特别地:
- 使用 SurfFeatureDetector 以及它的函数 detect 来实现检测过程
- 使用函数 drawKeypoints 来绘制检测到的关键点
理论
代码
这个教程的代码如下所示。你还可以从 这个链接下载到源代码
#include <stdio.h> #include <iostream> #include "opencv2/core/core.hpp" #include "opencv2/features2d/features2d.hpp" #include "opencv2/highgui/highgui.hpp" using namespace cv; void readme(); /** @function main */ int main( int argc, char** argv ) { if( argc != 3 ) { readme(); return -1; } Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE ); Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE ); if( !img_1.data || !img_2.data ) { std::cout<< " --(!) Error reading images " << std::endl; return -1; } //-- Step 1: Detect the keypoints using SURF Detector int minHessian = 400; SurfFeatureDetector detector( minHessian ); std::vector<KeyPoint> keypoints_1, keypoints_2; detector.detect( img_1, keypoints_1 ); detector.detect( img_2, keypoints_2 ); //-- Draw keypoints Mat img_keypoints_1; Mat img_keypoints_2; drawKeypoints( img_1, keypoints_1, img_keypoints_1, Scalar::all(-1), DrawMatchesFlags::DEFAULT ); drawKeypoints( img_2, keypoints_2, img_keypoints_2, Scalar::all(-1), DrawMatchesFlags::DEFAULT ); //-- Show detected (drawn) keypoints imshow("Keypoints 1", img_keypoints_1 ); imshow("Keypoints 2", img_keypoints_2 ); waitKey(0); return 0; } /** @function readme */ void readme() { std::cout << " Usage: ./SURF_detector <img1> <img2>" << std::endl; }
解释
结果
- 这是第一张图的特征点检测结果:
-
这是第二张图的特征点检测:
翻译者
Shuai Zheng, <[email protected]>, http://www.cbsr.ia.ac.cn/users/szheng/
from: http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/features2d/feature_detection/feature_detection.html#feature-detection
时间: 2024-11-02 18:01:26