OpenCV特征点检测

特征点检测

目标

在本教程中,我们将涉及:

理论

代码

这个教程的代码如下所示。你还可以从 这个链接下载到源代码

#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"

using namespace cv;

void readme();

/** @function main */
int main( int argc, char** argv )
{
  if( argc != 3 )
  { readme(); return -1; }

  Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
  Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );

  if( !img_1.data || !img_2.data )
  { std::cout<< " --(!) Error reading images " << std::endl; return -1; }

  //-- Step 1: Detect the keypoints using SURF Detector
  int minHessian = 400;

  SurfFeatureDetector detector( minHessian );

  std::vector<KeyPoint> keypoints_1, keypoints_2;

  detector.detect( img_1, keypoints_1 );
  detector.detect( img_2, keypoints_2 );

  //-- Draw keypoints
  Mat img_keypoints_1; Mat img_keypoints_2;

  drawKeypoints( img_1, keypoints_1, img_keypoints_1, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
  drawKeypoints( img_2, keypoints_2, img_keypoints_2, Scalar::all(-1), DrawMatchesFlags::DEFAULT );

  //-- Show detected (drawn) keypoints
  imshow("Keypoints 1", img_keypoints_1 );
  imshow("Keypoints 2", img_keypoints_2 );

  waitKey(0);

  return 0;
  }

  /** @function readme */
  void readme()
  { std::cout << " Usage: ./SURF_detector <img1> <img2>" << std::endl; }

解释

结果

  1. 这是第一张图的特征点检测结果:

  2. 这是第二张图的特征点检测:

翻译者

Shuai Zheng, <[email protected]>, http://www.cbsr.ia.ac.cn/users/szheng/

from: http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/features2d/feature_detection/feature_detection.html#feature-detection

时间: 2024-11-02 18:01:26

OpenCV特征点检测的相关文章

OpenCV特征点检测------ORB特征

OpenCV特征点检测------ORB特征 ORB是是ORiented Brief的简称.ORB的描述在下面文章中: Ethan Rublee and Vincent Rabaud and Kurt Konolige and Gary Bradski, ORB: an efcient alternative to SIFT or SURF, ICCV 2011 没有加上链接是因为作者确实还没有放出论文,不过OpenCV2.3RC中已经有了实现,WillowGarage有一个talk也提到了这个

OpenCV特征点检测匹配图像-----添加包围盒

最终效果: 其实这个小功能非常有用,甚至加上只有给人感觉好像人脸检测,目标检测直接成了demo了,主要代码如下: // localize the object std::vector<Point2f> obj; std::vector<Point2f> scene; for (size_t i = 0; i < good_matches.size(); ++i) { // get the keypoints from the good matches obj.push_bac

OpenCV特征点检测------Surf(特征点篇)

Surf(Speed Up Robust Feature) Surf算法的原理                                                                           1.构建Hessian矩阵构造高斯金字塔尺度空间 其实surf构造的金字塔图像与sift有很大不同,就是因为这些不同才加快了其检测的速度.Sift采用的是DOG图像,而surf采用的是Hessian矩阵行列式近似值图像.Hessian矩阵是Surf算法的核心,为了方便运算

OpenCV中feature2D学习——FAST特征点检测

在前面的文章<OpenCV中feature2D学习--SURF和SIFT算子实现特征点检测>中讲了利用SIFT和SURF算子进行特征点检测,这里尝试使用FAST算子来进行特征点检测. FAST的全名是:Features from Accelerated Segment Test,主要特点值计算速度快,比已知的其他特征点检测算法要快很多倍,可用于计算机视觉应用的实时场景.目前以其高计算效率(computational performance).高可重复性(highrepeatability)成为

【OpenCV入门教程之十七】OpenCV重映射 &amp; SURF特征点检测合辑

本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/30974513 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: [email protected] 写作当前博文时配套使用的OpenCV版本: 2.4.9 本篇文章中,我们一起探讨了OpenCV中

OpenCV中feature2D学习——FAST特征点检测与SIFT/SURF/BRIEF特征提取与匹配

在前面的文章<OpenCV中feature2D学习--FAST特征点检测>中讲了利用FAST算子进行特征点检测,这里尝试使用FAST算子来进行特征点检测,并结合SIFT/SURF/BRIEF算子进行特征点提取和匹配. I.结合SIFT算子进行特征点提取和匹配 由于数据类型的不同,SIFT和SURF算子只能采用FlannBasedMatcher或者BruteForceMatcher来进行匹配(参考OpenCV中feature2D学习--BFMatcher和FlannBasedMatcher).

【opencv入门】重映射 &amp; SURF特征点检测合辑

一.OpenCV重映射 1.重映射的概念简析 重映射,就是把一幅图像中某位置的像素放置到另一个图片指定位置的过程.为了完成映射过程, 我们需要获得一些插值为非整数像素的坐标,因为源图像与目标图像的像素坐标不是一一对应的.一般情况下,我们通过重映射来表达每个像素的位置 (x,y),像这样 : g(x,y) = f ( h(x,y) ) 在这里, g() 是目标图像, f() 是源图像, 而h(x,y) 是作用于 (x,y) 的映射方法函数. 来看个例子.若有一幅图像 I ,想满足下面的条件作重映射

OpenCV2学习笔记(十一):特征点检测之FAST算法

在上一节中,记录了Harris算子检测图像特征点的定义和基于OpenCV的实现方法,它基于两个正交方向上的强度变化率.本节记录另一种特征点检测算子FAST(Features from Accelerated Segment Test),它依赖少数像素的比较来确定是否接受一个特征点,其检测效率要好于Harris. 与Harris算法相同,FAST特征算法需要定义什么是特征点.这次的定义基于假定特征点周围的图像强度,通过检查候选像素的周围一圈像素来决定是否接受这一个特征点.与中心点差异较大的像素如果

OpenCV2学习笔记(十):特征点检测之Harris法

在计算机视觉中,特征点的概念被大量用于解决物体识别.图像匹配.视觉跟踪.三维重建等问题,比如图像中物体的角点,它们是在图像中可被轻易而精确地定位的二维特征.顾名思义,特征点检测的思想是无需观察整幅图像,而是通过选择某些特殊点,然后对它们执行局部分析.如果能检测到足够多的这种点,同时它们的区分度很高,并且可以精确定位稳定的特征,那么这个方法就很有效.这里主要使用Harris特征检测器检测图像角点.使用的开发平台为Qt5.3.2+OpenCV2.4.9. Harris角点的理论部分可见这篇blog: