素数筛法模板

代码:

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <math.h>
#include <queue>
#define MAX 1000001
using namespace std;
bool b[MAX];
int main()
{
    b[0]=b[1]=false;
    b[2]=true;
    for(int i=3; i<MAX; i++)
        if(i%2==0) b[i]=false;
        else b[i]=true;
    double t=sqrt(1000000*1.0);
    for(int i=3; i<=t; i++)
    {
        if(b[i])
        {
            for(int j=i*i; j<MAX; j=j+i)//j=i*i;如:j=5*5(因为2*5,3*5,4*5在之前已经被筛去,节约时间),因为i<=sqrt(MAX-1),所以i*i不会超出int范围。
            {
                b[j]=false;
            }
        }
    }
    for(int i=1; i<=100; i++)
    {
        if(b[i]) printf("%d ",i);
    }
}
时间: 2024-12-08 05:59:23

素数筛法模板的相关文章

【 数学基础】【素数线性筛法--欧拉筛法模板】【普通筛法的优化】

质数(素数):指大于1的所有自然数中,除了1和自身,不能被其它自然数整除的数 合数:比1大,但不是素数的数称为合数,合数除了被1和自身整除,还能被其它数整除 质因数(素因数或质因子):能整除给定正整数的质数,除1以外,两个没有其它共同质因子的正整数称为互质 1和0既非素数又非合数 素数筛法原理:素数的倍数一定不是素数. 实现步骤:用一个boook数组对maxn内的所有数进行标记,1为合数,0为素数,book初始化为0是假设全部数都为素数,从第一个素数2开始,把2的倍数标记为1,然后继续下一轮 欧

素数筛 模板

1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 5 using namespace std; 6 7 int prim[3000000]={2,3,5}; 8 //素数是分为基本素数{2,3}.阳素数{6N+1,N>=1}形式的.阴素数{6N-1,N>=1}形式的 9 //为了代码的好写,在这里这样写的 : 10 //数除了{2,3,5}为素数,其他的数可以写成6N,6N+1

poj 2478 Farey Sequence(基于素数筛法求欧拉函数)

http://poj.org/problem?id=2478 求欧拉函数的模板. 初涉欧拉函数,先学一学它基本的性质. 1.欧拉函数是求小于n且和n互质(包括1)的正整数的个数.记为φ(n). 2.欧拉定理:若a与n互质,那么有a^φ(n) ≡ 1(mod n),经常用于求幂的模. 3.若p是一个质数,那么φ(p) = p-1,注意φ(1) = 1. 4.欧拉函数是积性函数: 若m与n互质,那么φ(nm) = φ(n) * φ(m). 若n = p^k且p为质数,那么φ(n) = p^k - p

hdu6069[素数筛法] 2017多校3

/*hdu6069[素数筛法] 2017多校3*/ #include <bits/stdc++.h> using namespace std; typedef long long LL; LL l, r, k; const LL MOD = 998244353LL; int T, n, prime[1100000], primesize; bool isprime[11000000]; void getlist(int listsize) { memset(isprime, 1, sizeof

POJ_3421_X-factor Chains(素数筛法)

X-factor Chains Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5659   Accepted: 1786 Description Given a positive integer X, an X-factor chain of length m is a sequence of integers, 1 = X0, X1, X2, -, Xm = X satisfying Xi < Xi+1 and Xi

HDU 6069 Counting Divisors(区间素数筛法)

题意:...就题面一句话 思路:比赛一看公式,就想到要用到约数个数定理 约数个数定理就是: 对于一个大于1正整数n可以分解质因数: 则n的正约数的个数就是 对于n^k其实就是每个因子的个数乘了一个K 然后现在就变成了求每个数的每个质因子有多少个,但是比赛的时候只想到sqrt(n)的分解方法,总复杂度爆炸,就一直没过去,然后赛后看官方题解感觉好妙啊! 通过类似素数筛法的方式,把L - R的质因子给分解,就可以在O(nlogn)的时间之内把所以的数给筛出来. 代码: /** @xigua */ #i

NowCoder猜想(素数筛法+位压缩)

在期末被各科的大作业碾压快要窒息之际,百忙之中抽空上牛客网逛了逛,无意中发现一道好题,NowCoder猜想,题意很明显,就是个简单的素数筛法,但竟然超内存了,我晕(+﹏+)~  明明有 3 万多 k 的空间限制……于是我不打表,试了试最暴力的做法,赤裸裸的做法果然超时了,无奈,只好对素数筛法进行位压缩了,这是我目前所能想到的方法了,第一次用上这样的特技,还是调了好一会(位数组里不能用 bool 来定义,具体的话好像 bool 和 int 之类的整型稍有不同:也不能用 int,因其最高位是正负标志

【POJ3006】Dirichlet&#39;s Theorem on Arithmetic Progressions(素数筛法)

简单的暴力筛法就可. 1 #include <iostream> 2 #include <cstring> 3 #include <cmath> 4 #include <cctype> 5 #include <cstdio> 6 #include <cmath> 7 #include <algorithm> 8 #include <numeric> 9 using namespace std; 10 11 co

HDOJ 6069 素数筛法(数学)

Counting Divisors Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)Total Submission(s): 3041    Accepted Submission(s): 1130 Problem Description In mathematics, the function d(n) denotes the number of divisors of