图像处理基本算法-卷积和相关

在执行线性空间滤波时,经常会遇到两个概念相关和卷积
二者基本相似,在进行图像匹配是一个非常重要的方法。
相关是滤波器模板移过图像并计算计算每个位置乘积之和的处理
卷积的机理相似,但滤波器首先要旋转180度
相关的计算步骤:
(1)移动相关核的中心元素,使它位于输入图像待处理像素的正上方
(2)将输入图像的像素值作为权重,乘以相关核
(3)将上面各步得到的结果相加做为输出
卷积的计算步骤:
(1)卷积核绕自己的核心元素顺时针旋转180度
(2)移动卷积核的中心元素,使它位于输入图像待处理像素的正上方
(3)在旋转后的卷积核中,将输入图像的像素值作为权重相乘
(4)第三步各结果的和做为该输入像素对应的输出像素
超出边界时要补充像素,一般是添加0或者添加原始边界像素的值
    可以看出他们的主要区别在于计算卷积的时候,卷积核要先做旋转。

而计算相关过程中不需要旋转相关核。

离散单位冲击:我们将包含单个1而其余全是0的函数成为离散单位冲击。
重要性质:一个函数与离散单位冲击相关,在冲击位置产生这个函数的一
个翻转版本。
f 函数
w 滤波器模板
eg:
f(x,y)
  0 0 0 0 0
  0 0 0 0 0 
  0 0 1 0 0
  0 0 0 0 0
  0 0 0 0 0
w(x,y)
  1 2 3 
  4 5 6 
  7 8 9
相关 f*w = 
     0     0     0     0     0
     0     9     8     7     0
     0     6     5     4     0
     0     3     2     1     0
     0     0     0     0     0
卷积f*w=
     0     0     0     0     0
     0     1     2     3     0
     0     4     5     6     0
     0     7     8     9     0
     0     0     0     0     0
相关的用途:图象的匹配

时间: 2024-10-11 22:57:15

图像处理基本算法-卷积和相关的相关文章

Atitit 图像处理之理解卷积attilax总结

Atitit 图像处理之理解卷积attilax总结 卷积的运算可以分为反转.平移,相乘,求和. 在图像处理中,图像是一个大矩阵,卷积模板是一个小矩阵.按照上述过程,就是先把小矩阵反转,然后平移到某一位置,小矩阵的每一个小格对应大矩阵里面的一个小格,然后把对应小格里面的数相乘,把所有对应小格相乘的结果相加求和,得出的最后结果赋值给小矩阵中央小格对应的图像中小格的值,替换原来的值.就是上述说到的,反转.平移.相乘.求和.        一般图像卷积就是从第一个像素(小格)开始遍历到最后一个像素(小格

图像处理之基础---卷积,滤波,平滑

/*今天师弟来问我,CV的书里到处都是卷积,滤波,平滑……这些概念到底是什么意思,有什么区别和联系,瞬间晕菜了,学了这么久CV,卷积,滤波,平滑……这些概念每天都念叨好几遍,可是心里也就只明白个大概的意思,赶紧google之~ 发现自己以前了解的真的很不全面,在此做一些总结,以后对这种基本概念要深刻学习了~*/ 1.图像卷积(模板) (1).使用模板处理图像相关概念: 模板:矩阵方块,其数学含义是一种卷积运算. 卷积运算:可看作是加权求和的过程,使用到的图像区域中的每个像素分别于卷积核(权矩阵)

灰度图像--空域滤波 基础:卷积和相关

学习DIP第28天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro

图像处理之基础---卷积傅立叶变换中的复数

整个看FFT过程中复数一直很折磨我. 原本的实数的东西通过复数表达很像旋转矩阵用quaternion来表达,尽管旋转vector还是要用matrix来做,但是通过用quaternion表达的旋转意义可以做插值等很多快速的操作,而且内存消耗也小,在做完这些操作之后再转成matrix用就好了. 复数表达也是类似. a+bi = M*(cos(theta)+sin(theta)*i)----极坐标 cos(x) + sin(x)*i = exp(x*i)----欧拉公式 这个用欧拉公式转出来的exp(

图像处理之基础---卷积模板简介

1.使用模板处理图像相关概念:       模板:矩阵方块,其数学含义是一种卷积运算. 卷积运算:可看作是加权求和的过程,使用到的图像区域中的每个像素分别与卷积核(权矩阵)的每个元素对应相乘,所有乘积之和作为区域中心像素的新值. 卷积核:卷积时使用到的权,用一个矩阵表示,该矩阵与使用的图像区域大小相同,其行.列都是奇数,是一个权矩阵. 卷积示例: 假设3 * 3的像素区域R与卷积核G分别为: 则卷积运算为: R5(中心像素)=R1G1 + R2G2 + R3G3 + R4G4 + R5G5 +

图像处理之基础---卷积模板运算

1.使用模板处理图像相关概念: 模板:矩阵方块,其数学含义是一种卷积运算.      卷积运算:可看作是加权求和的过程,使用到的图像区域中的每个像素分别于卷积核(权矩阵)的每个元素对应相                乘,所有乘积之和作为区域中心像素的新值.      卷积核:卷积时使用到的权用一个矩阵表示,该矩阵与使用的图像区域大小相同,其行.列都是奇数,              是一个权矩阵.      卷积示例:              3 * 3 的像素区域R与卷积核G的卷积运算: 

转:图像处理之理解卷积

图像处理之理解卷积 一:什么是卷积 离散卷积的数学公式可以表示为如下形式: f(x) =  - 其中C(k)代表卷积操作数,g(i)代表样本数据, f(x)代表输出结果. 举例如下: 假设g(i)是一个一维的函数,而且代表的样本数为G = [1,2,3,4,5,6,7,8,9] 假设C(k)是一个一维的卷积操作数, 操作数为C=[-1,0,1] 则输出结果f(x)可以表示为 F=[1,2,2,2,2,2,2,2,1]  //边界数据未处理 以上只是一维的情况下,当对一幅二维数字图像加以卷积时,其

图像处理之基础---卷积及其快速算法的C++实现

头文件: /* * Copyright (c) 2008-2011 Zhang Ming (M. Zhang), [email protected] * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation,

图像处理之基础---卷积去噪

讨论如何使用卷积作为数学工具来处理图像,实现图像的滤波,其方法包含以下几种,均值 滤波,中值滤波,最大最小值滤波,关于什么是卷积以及理解卷积在图像处理中作用参见这 里–http://blog.csdn.net/jia20003/article/details/7038938 均值滤波: 均值滤波,是图像处理中最常用的手段,从频率域观点来看均值滤波是一种低通滤波器,高 频信号将会去掉,因此可以帮助消除图像尖锐噪声,实现图像平滑,模糊等功能.理想的均 值滤波是用每个像素和它周围像素计算出来的平均值替