uva10325(容斥原理)

题目连接:UVA 10325

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<cmath>
 4 #include<algorithm>
 5 #include<iostream>
 6 using namespace std;
 7 #define LL long long
 8 LL n,m;
 9 LL a[20];
10 LL gcd(LL a,LL b)
11 {
12     return b==0?a:gcd(b,a%b);
13 }
14 int main()
15 {
16     while(scanf("%lld%lld",&n,&m)!=EOF)
17     {
18         for(int i=0;i<m;i++)
19             scanf("%lld",&a[i]);
20         LL ans=0;
21         for(int i=0;i<(1<<m);i++)
22         {
23             int ct=0;
24             LL temp=1;
25             for(int j=0;j<m;j++)
26             {
27                 if(i&(1<<j)) ct++,temp=temp/gcd(temp,a[j])*a[j];
28             }
29             if(ct&1) ans-=n/temp;
30             else ans+=n/temp;
31         }
32         printf("%lld\n",ans);
33     }
34 }
时间: 2024-10-24 23:27:43

uva10325(容斥原理)的相关文章

UVA10325 The Lottery( 容斥原理)

题意: 给定一个数n 再给m个数(m<15) 假设这m个数为 a[0],a[1].....a[m-1]; 求1~n中非数组a的数的倍数的数,就是把1~n中数组a的数的倍数筛掉,剩下的数的个数就是结果. 暴力跑会超时,利用容斥原理,比如n=10,m=2,a[0]=2,a[1]=3,把1到20中所有2的倍数筛掉, 先令ans=n=20,ans=ans-n/2=10.再把1到20中所有3的倍数筛掉,ans=ans-n/3=4. 那么现在问题来了,这么筛选的话会导致2和3的公倍数进行了二次筛选,也就是6

容斥原理学习

简单入门题目: UVA10325   The lottery  http://vjudge.net/vjudge/contest/view.action?cid=53767#problem/A 设A[I]表示 是其中i个数的倍数的个数 SUM=A[1]-A[2]+A[3]-A[4]..... ANS=N-SUM; 代码如下: [cpp] view plaincopy #include <iostream> #include <cstring> #include <cstdio

UVA 11014 - Make a Crystal(容斥原理)

UVA 11014 - Make a Crystal 题目链接 题意:给定一个NxNxN的正方体,求出最多能选几个整数点.使得随意两点PQ不会使PQO共线. 思路:利用容斥原理,设f(k)为点(x, y, z)三点都为k的倍数的点的个数(要扣掉一个原点O).那么全部点就是f(1),之后要去除掉共线的,就是扣掉f(2), f(3), f(5)..f(n).n为素数.由于这些素数中包括了合数的情况,而且这些点必定与f(1)除去这些点以外的点共线,所以扣掉.可是扣掉后会扣掉一些反复的.比方f(6)在f

BZOJ3198 SDOI2013 spring HASH+容斥原理

题意:给定6个长度为n的数列,求有多少个数对(i,j)((i,j)≡(j,i))使得i和j位置恰好有K个数相同,其中0≤K≤6 题解: 设fi=至少有K个数相同的位置对的数量,用2^6枚举每一种可能,根据容斥原理,答案就是\[\sum\limits_{i = K}^N {{f_i}C_i^K{{\left( { - 1} \right)}^{i - K}}} \] 至于多乘一个组合数,是因为当前枚举到有x个数相同,一个位置对有i个相同的数,那么累计的时候就会算成$C_x^i$,因此实际上这个位置

hdu 4790 Just Random 容斥原理+数学

Just Random Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1723    Accepted Submission(s): 483 Problem Description Coach Pang and Uncle Yang both love numbers. Every morning they play a game w

[BZOJ 1042] 硬币购物 容斥原理

题意 有四种货币, 它们的价值分别是 c[0], c[1], c[2], c[3] . n 次询问, 每次给定 d[0], d[1], d[2], d[3], s, 问凑出 s , 且第 i 种货币不超过 c[i] 个的方案数. c[i], d[i], s <= 100000 , n <= 1000 . 分析 设第 i 种货币取了 x[i] 个. 问题转化为求不定方程 c[0]x[0] + c[1]x[1] + c[2]x[2] + c[3]x[3] = s 的非负整数解的个数. 且满足 4

HDU - 4135 Co-prime(容斥原理)

Question 参考 题意找出[a,b]中与n互质的数的个数分析通常我们求1-n中与n互质的数的个数都是用欧拉函数.但如果n比较大或者是求1-m中与n互质的数的个数等等问题,要想时间效率高的话还是用容斥原理.先对n分解质因数,分别记录每个质因数, 那么所求区间内与某个质因数不互质的个数就是 m/r(i),假设r(i)是r的某个质因子 假设只有三个质因子, 总的不互质的个数应该为p1+p2+p3-p1*p2-p1*p3-p2*p3+p1*p2*p3. pi代表m/r(i),即与某个质因子不互质的

容斥原理

对容斥原理的描述 容斥原理是一种重要的组合数学方法,可以让你求解任意大小的集合,或者计算复合事件的概率. 描述 容斥原理可以描述如下: 要计算几个集合并集的大小,我们要先将所有单个集合的大小计算出来,然后减去所有两个集合相交的部分,再加回所有三个集合相交的部分,再减去所有四个集合相交的部分,依此类推,一直计算到所有集合相交的部分. 关于集合的原理公式 上述描述的公式形式可以表示如下:                  它可以写得更简洁一些,我们将B作为所有Ai的集合,那么容斥原理就变成了: 这个

hdu2204 Eddy&#39;s爱好 打表+容斥原理

Ignatius 喜欢收集蝴蝶标本和邮票,但是Eddy的爱好很特别,他对数字比较感兴趣,他曾经一度沉迷于素数,而现在他对于一些新的特殊数比较有兴趣.这些特殊数是这样的:这些数都能表示成M^K,M和K是正整数且K>1.正当他再度沉迷的时候,他发现不知道什么时候才能知道这样的数字的数量,因此他又求助于你这位聪明的程序员,请你帮他用程序解决这个问题.为了简化,问题是这样的:给你一个正整数N,确定在1到N之间有多少个可以表示成M^K(K>1)的数. 打表+容斥原理 1 #include<stdi