我的Spark源码核心SparkContext走读全纪录

Dirver Program(SparkConf)  package org.apache.spark.SparkConf

Master        package org.apache.spark.deploy.master

SparkContext  package org.apache.spark.SparkContext

Stage         package org.apache.spark.scheduler.Stage

Task          package org.apache.spark.scheduler.Task

DAGScheduler  package org.apache.spark.scheduler

TaskScheduler package org.apache.spark.scheduler.TaskScheduler

TaskSchedulerImpl  package org.apache.spark.scheduler

Worker        package org.apache.spark.deploy.worker

Executor      package org.apache.spark.executor

BlockManager  package org.apache.spark.storage

TaskSet       package org.apache.spark.scheduler

//初始化后开始创建

// Create and start the scheduler

val (sched, ts) = SparkContext.createTaskScheduler(this, master)

_schedulerBackend = sched

_taskScheduler = ts

_dagScheduler = new DAGScheduler(this)

_heartbeatReceiver.send(TaskSchedulerIsSet)

/**

* Create a task scheduler based on a given master URL.

* Return a 2-tuple of the scheduler backend and the task scheduler.

*/

private def createTaskScheduler(

sc: SparkContext,

master: String): (SchedulerBackend, TaskScheduler) = {

master match {

case "local" =>

实例化一个

val scheduler = new TaskSchedulerImpl(sc)

构建masterUrls:

val masterUrls = localCluster.start()

据说是非常关键的backend:

val backend = new SparkDeploySchedulerBackend(scheduler, sc, masterUrls)

scheduler.initialize(backend)

backend.shutdownCallback = (backend: SparkDeploySchedulerBackend) => {

localCluster.stop()

}

(backend, scheduler)

时间: 2024-10-13 01:05:20

我的Spark源码核心SparkContext走读全纪录的相关文章

spark源码之SparkContext

SparkContext可以说是Spark应用的发动机引擎,Spark Drive的初始化围绕这SparkContext的初始化. SparkContext总览 sparkcontxt的主要组成部分 sparkEnv:spark运行环境,Executor是处理任务的执行器,依赖于SparkEnv的环境.Driver中也包含SparkEnv,为了保证Local模式下任务执行.此外,SparkEnv还包含serializerManager.RpcEnv.BlockManager.mapOutputT

spark源码解读-SparkContext初始化过程

sparkcontext是spark应用程序的入口,每个spark应用都会创建sparkcontext,用于连接spark集群来执行计算任务.在sparkcontext初始化过程中会创建SparkEnv,SparkUI,TaskSchedule,DAGSchedule等多个核心类,我们会逐个分析他们. 下面我们看一下sparkcontext的初始化过程,首先判断一些参数, try { _conf = config.clone() _conf.validateSettings() if (!_co

Spark源码剖析——SparkContext的初始化(四)_TaskScheduler的启动

7. TaskScheduler的启动 第五节介绍了TaskScheduler的创建,要想TaskScheduler发挥作用,必须要启动它,代码: TaskScheduler在启动的时候,实际调用了backend的start方法,即同时启动了backend.local模式下,这里的backend是localSchedulerBackend.在TaskScheduler初始化时传入localSchedulerBackend.以LocalSchedulerBackend为例,启动LocalSched

Spark源码剖析——SparkContext的初始化(四)_Hadoop相关配置及Executor环境变量

4. Hadoop相关配置及Executor环境变量的设置 4.1 Hadoop相关配置信息 默认情况下,Spark使用HDFS作为分布式文件系统,所以需要获取Hadoop相关配置信息的代码如下: 获取的配置信息包括: 将Amazon S3文件系统的AccessKeyId和SecretAccessKey加载到Hadoop的Configuration: 将SparkConf中所有以spark.hadoop. 开头的属性都复制到Hadoop的Configuration: 将SparkConf的属性s

Spark源码剖析——SparkContext的初始化(六)_创建和启动DAGScheduler

6.创建和启动DAGScheduler DAGScheduler主要用于在任务正式交给TaskSchedulerImpl提交之前做一些准备工作,包括:创建Job,将DAG中的RDD划分到不同的Stage,提交Stage,等等.创建DAGScheduler的代码如下: DAGScheduler的数据结构主要维护jobId和stageId的关系.Stage.ActiveJob.以及缓存的RDD的partitions的位置信息,见代码: DAGSchedulerEventProcessLoop能处理的

[转]apache的源码安装详细过程全纪录

原文链接:http://www.jb51.net/article/59474.htm 文中  开机启动需要修改 而且特别麻烦 还的配置php   否则不认识php文件  郁闷!只能做参考了!

Apache Spark源码走读之14 -- Graphx实现剖析

欢迎转载,转载请注明出处,徽沪一郎. 概要 图的并行化处理一直是一个非常热门的话题,这里头的重点有两个,一是如何将图的算法并行化,二是找到一个合适的并行化处理框架.Spark作为一个非常优秀的并行处理框架,将一些并行化的算法移到其上面就成了一个很自然的事情. Graphx是一些图的常用算法在Spark上的并行化实现,同时提供了丰富的API接口.本文就Graphx的代码架构及pagerank在graphx中的具体实现做一个初步的学习. Google为什么赢得了搜索引擎大战 当Google还在起步的

Apache Spark源码走读之11 -- sql的解析与执行

欢迎转载,转载请注明出处,徽沪一郎. 概要 在即将发布的spark 1.0中有一个新增的功能,即对sql的支持,也就是说可以用sql来对数据进行查询,这对于DBA来说无疑是一大福音,因为以前的知识继续生效,而无须去学什么scala或其它script. 一般来说任意一个sql子系统都需要有parser,optimizer,execution三大功能模块,在spark中这些又都是如何实现的呢,这些实现又有哪些亮点和问题?带着这些疑问,本文准备做一些比较深入的分析. SQL模块分析有几大难点,分别为

Apache Spark源码走读之12 -- Hive on Spark运行环境搭建

欢迎转载,转载请注明出处,徽沪一郎. 楔子 Hive是基于Hadoop的开源数据仓库工具,提供了类似于SQL的HiveQL语言,使得上层的数据分析人员不用知道太多MapReduce的知识就能对存储于Hdfs中的海量数据进行分析.由于这一特性而收到广泛的欢迎. Hive的整体框架中有一个重要的模块是执行模块,这一部分是用Hadoop中MapReduce计算框架来实现,因而在处理速度上不是非常令人满意.由于Spark出色的处理速度,有人已经成功将HiveQL的执行利用Spark来运行,这就是已经非常