Bilateral Filtering(双边滤波) for SSAO

原网址:http://blog.csdn.net/bugrunner/article/details/7170471

1. 简介

图像平滑是一个重要的操作,而且有多种成熟的算法。这里主要简单介绍一下Bilateral方法(双边滤波),这主要是由于前段时间做了SSAO,需要用bilateral blur 算法进行降噪。Bilateral blur相对于传统的高斯blur来说很重要的一个特性即可可以保持边缘(Edge Perseving),这个特点对于一些图像模糊来说很有用。一般的高斯模糊在进行采样时主要考虑了像素间的空间距离关系,但是却并没有考虑像素值之间的相似程度,因此这样我们得到的模糊结果通常是整张图片一团模糊。Bilateral blur的改进就在于在采样时不仅考虑像素在空间距离上的关系,同时加入了像素间的相似程度考虑,因而可以保持原始图像的大体分块进而保持边缘。在于游戏引擎的post blur算法中,bilateral blur常常被用到,比如对SSAO的降噪。

2. 原理

滤波算法中,目标点上的像素值通常是由其所在位置上的周围的一个小局部邻居像素的值所决定。在2D高斯滤波中的具体实现就是对周围的一定范围内的像素值分别赋以不同的高斯权重值,并在加权平均后得到当前点的最终结果。而这里的高斯权重因子是利用两个像素之间的空间距离(在图像中为2D)关系来生成。通过高斯分布的曲线可以发现,离目标像素越近的点对最终结果的贡献越大,反之则越小。其公式化的描述一般如下所述:

其中的c即为基于空间距离的高斯权重,而用来对结果进行单位化。

高斯滤波在低通滤波算法中有不错的表现,但是其却有另外一个问题,那就是只考虑了像素间的空间位置上的关系,因此滤波的结果会丢失边缘的信息。这里的边缘主要是指图像中主要的不同颜色区域(比如蓝色的天空,黑色的头发等),而Bilateral就是在Gaussian blur中加入了另外的一个权重分部来解决这一问题。Bilateral滤波中对于边缘的保持通过下述表达式来实现:

其中的s为基于像素间相似程度的高斯权重,同样用来对结果进行单位化。对两者进行结合即可以得到基于空间距离、相似程度综合考量的Bilateral滤波:

上式中的单位化分部综合了两种高斯权重于一起而得到,其中的cs计算可以详细描述如下:

且有

且有

上述给出的表达式均是在空间上的无限积分,而在像素化的图像中当然无法这么做,而且也没必要如此做,因而在使用前需要对其进行离散化。而且也不需要对于每个局部像素从整张图像上进行加权操作,距离超过一定程度的像素实际上对当前的目标像素影响很小,可以忽略的。限定局部子区域后的离散化公就可以简化为如下形式:

上述理论公式就构成了Bilateral滤波实现的基础。为了直观地了解高斯滤波与双边滤波的区别,我们可以从下列图示中看出依据。假设目标源图像为下述左右区域分明的带有噪声的图像(由程序自动生成),蓝色框的中心即为目标像素所在的位置,那么当前像素处所对应的高斯权重与双边权重因子3D可视化后的形状如后边两图所示:      

左图为原始的噪声图像;中间为高斯采样的权重;右图为Bilateral采样的权重。从图中可以看出Bilateral加入了相似程度分部以后可以将源图像左侧那些跟当前像素差值过大的点给滤去,这样就很好地保持了边缘。为了更加形象地观察两者间的区别,使用Matlab将该图在两种不同方式下的高度图3D绘制出来,如下:

  

上述三图从左到右依次为:双边滤波,原始图像,高斯滤波。从高度图中可以明显看出Bilateral和Gaussian两种方法的区别,前者较好地保持了边缘处的梯度,而在高斯滤波中,由于其在边缘处的变化是线性的,因而就使用连累的梯度呈现出渐变的状态,而这表现在图像中的话就是边界的丢失(图像的示例可见于后述)。

3. 代码实现

有了上述理论以后实现Bilateral Filter就比较简单了,其实它也与普通的Gaussian Blur没有太大的区别。这里主要包括3部分的操作: 基于空间距离的权重因子生成;基于相似度的权重因子的生成;最终filter颜色的计算。

3.1 Spatial Weight

这就是通常的Gaussian Blur中使用的计算高斯权重的方法,其主要通过两个pixel之间的距离并使用如下公式计算而来:

其中的就表示两个像素间的距离,比如当前像素与其右边紧邻的一个像素之间的距离我们就可以用来计算,也即两个二维向量{0 , 0}以及{0 , 1}之间的欧氏距离。直接计算一个区域上的高斯权重并单位化后就可以进行高斯模糊了。

3.2 Similarity Weight

与基于距离的高斯权重计算类似,只不过此处不再根据两个pixel之间的空间距离,而是根据其相似程度(或者两个pixel的值之间的距离)。

其中的表示两个像素值之间的距离,可以直接使用其灰度值之间的差值或者RGB向量之间的欧氏距离。

3.3 Color Filtering

有了上述两部分所必需的权重因子之后,那么具体的双边滤波的实现即与普通的高斯滤波无异。主要部分代码如下述:

[cpp] view plaincopyprint?

  1. UCHAR3 BBColor(int posX , int posY)
  2. {
  3. int centerItemIndex = posY * picWidth4 + posX * 3 , neighbourItemIndex;
  4. int weightIndex;
  5. double gsAccumWeight = 0;
  6. double accumColor = 0;
  7. // 计算各个采样点处的Gaussian权重,包括closeness,similarity
  8. for(int i = -number ; i <= number ; ++i)
  9. {
  10. for(int j = -number ; j <= number ; ++j)
  11. {
  12. weightIndex = (i + number) * (number * 2 + 1) + (j + number);
  13. neighbourItemIndex = min(noiseImageHeight - 1 , max(0 , posY + j * radius)) * picWidth4 +
  14. min(noiseImageWidth - 1  , max(0 , posX + i * radius)) * 3;
  15. pCSWeight[weightIndex] = LookupGSWeightTable(pSrcDataBuffer[neighbourItemIndex] , pSrcDataBuffer[centerItemIndex]);
  16. pCSWeight[weightIndex] = pGSWeight[weightIndex] * pGCWeight[weightIndex];
  17. gsAccumWeight += pCSWeight[weightIndex];
  18. }
  19. }
  20. // 单位化权重因子
  21. gsAccumWeight = 1 / gsAccumWeight;
  22. for(int i = -number ; i <= number ; ++i)
  23. {
  24. for(int j = -number ; j <= number ; ++j)
  25. {
  26. weightIndex = (i + number) * (number * 2 + 1) + (j + number);
  27. pCSWeight[weightIndex] *= gsAccumWeight;
  28. }
  29. }
  30. // 计算最终的颜色并返回
  31. for(int i = -number ; i <= number ; ++i)
  32. {
  33. for(int j = -number ; j <= number ; ++j)
  34. {
  35. weightIndex = (i + number) * (number * 2 + 1) + (j + number);
  36. neighbourItemIndex = min(noiseImageHeight - 1 , max(0 , posY + j * radius)) * picWidth4 +
  37. min(noiseImageWidth - 1  , max(0 , posX + i * radius)) * 3;
  38. accumColor += pSrcDataBuffer[neighbourItemIndex + 0] * pCSWeight[weightIndex];
  39. }
  40. }
  41. return UCHAR3(accumColor , accumColor , accumColor);
  42. }
UCHAR3 BBColor(int posX , int posY)
{
	int centerItemIndex = posY * picWidth4 + posX * 3 , neighbourItemIndex;
	int weightIndex;
	double gsAccumWeight = 0;
	double accumColor = 0;

	// 计算各个采样点处的Gaussian权重,包括closeness,similarity
	for(int i = -number ; i <= number ; ++i)
	{
		for(int j = -number ; j <= number ; ++j)
		{
			weightIndex = (i + number) * (number * 2 + 1) + (j + number);
			neighbourItemIndex = min(noiseImageHeight - 1 , max(0 , posY + j * radius)) * picWidth4 +
				             min(noiseImageWidth - 1  , max(0 , posX + i * radius)) * 3;

			pCSWeight[weightIndex] = LookupGSWeightTable(pSrcDataBuffer[neighbourItemIndex] , pSrcDataBuffer[centerItemIndex]);
			pCSWeight[weightIndex] = pGSWeight[weightIndex] * pGCWeight[weightIndex];
			gsAccumWeight += pCSWeight[weightIndex];
		}
	}

	// 单位化权重因子
	gsAccumWeight = 1 / gsAccumWeight;
	for(int i = -number ; i <= number ; ++i)
	{
		for(int j = -number ; j <= number ; ++j)
		{
			weightIndex = (i + number) * (number * 2 + 1) + (j + number);
			pCSWeight[weightIndex] *= gsAccumWeight;
		}
	}

	// 计算最终的颜色并返回
	for(int i = -number ; i <= number ; ++i)
	{
		for(int j = -number ; j <= number ; ++j)
		{
			weightIndex = (i + number) * (number * 2 + 1) + (j + number);
			neighbourItemIndex = min(noiseImageHeight - 1 , max(0 , posY + j * radius)) * picWidth4 +
			                     min(noiseImageWidth - 1  , max(0 , posX + i * radius)) * 3;
			accumColor += pSrcDataBuffer[neighbourItemIndex + 0] * pCSWeight[weightIndex];
		}
	}

	return UCHAR3(accumColor , accumColor , accumColor);
}

其中的相似度分部的权重s主要根据两个Pixel之间的颜色差值计算面来。对于灰度图而言,这个差值的范围是可以预知的,即[-255, 255],因而为了提高计算的效率我们可以将该部分权重因子预计算生成并存表,在使用时快速查询即可。使用上述实现的算法对几张带有噪声的图像进行滤波后的结果如下所示:

  

  

上图从左到右分别为:双边滤波;原始图像;高斯滤波。从图片中可以较为明显地看出两种算法的区别,最直观的感受差别就是使用高斯算法后整张图片都是一团模糊的状态;而双边滤波则可以较好地保持原始图像中的区域信息,看起来仍然嘴是嘴、眼是眼(特别是在第一张美女图像上的效果!看来PS是灰常重要啊~~^o^)。

4. 在SSAO中的使用

在上述实现中的边缘判定函数主要是通过两个像素值之间的差异来决定,这也是我们观察普通图片的一种普遍感知方式。当然,也可以根据使用的需求情况来使用其它的方式判断其它定义下的边缘,比如使用场景的depth或是normal。比如在对SSAO进行滤波时可以直接使用Depth值来行边缘判断。首先,设置一个深度的阈值,在作边缘检测时比较两点间的depth差值,如果差值大于阈值,则认为其属于不同的区域,则此处就应为边界。使用此方法得到的效果可见于下图所示:

高斯滤波

双边滤波

在得到滤波之后的SSAO图像之后,与原始图像进行直接的整合就可以得到最终的渲染效果,如下图所示:

SSAO关闭

SSAO开启

后记: 崭新的2012年自己以一篇博文开始,感觉也不错,加油~!~!




8
时间: 2024-11-25 13:47:17

Bilateral Filtering(双边滤波) for SSAO的相关文章

Bilateral Filtering(双边滤波) for SSAO(转)

原文链接:http://blog.csdn.net/bugrunner/article/details/7170471 另外一篇相似的英文资料:http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html#Index   1. 简介 图像平滑是一个重要的操作,而且有多种成熟的算法.这里主要简单介绍一下Bilateral方法(双边滤波),这主要是由于前段时间做了SSAO,需要用b

Bilateral Filtering(双边滤波)算法研究

1. 简介 图像平滑是一个重要的操作,而且有多种成熟的算法.这里主要简单介绍一下Bilateral方法(双边滤波),这主要是由于前段时间做了SSAO,需要用bilateral blur 算法进行降噪.Bilateral blur相对于传统的高斯blur来说很重要的一个特性即可可以保持边缘(Edge Perseving),这个特点对于一些图像模糊来说很有用.一般的高斯模糊在进行采样时主要考虑了像素间的空间距离关系,但是却并没有考虑像素值之间的相似程度,因此这样我们得到的模糊结果通常是整张图片一团模

双边滤波原理与C++实现

一.原理 双边滤波(Bilateral filter)是一种可以去噪保边的滤波器.之所以可以达到此效果,是因为滤波器是由两个函数构成:一个函数是由几何空间距离决定滤波器系数,另一个由像素差值决定滤波器系数. 原理示意图如下: 双边滤波器中,输出像素的值依赖于邻域像素的值的加权组合, 权重系数w(i,j,k,l)取决于定义域核 和值域核 的乘积 二.C++实现 2.1 OpenCV调用方法: cvSmooth(m_iplImg, dstImg, CV_BILATERAL, 2 * r + 1, 0

灰度图像--图像增强 双边滤波 Bilateral Filtering

学习DIP第31天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro

【OpenCV】邻域滤波:方框、高斯、中值、双边滤波

原文:http://blog.csdn.net/xiaowei_cqu/article/details/7785365 邻域滤波(卷积) 邻域算子值利用给定像素周围像素的值决定此像素的最终输出.如图左边图像与中间图像卷积禅城右边图像.目标图像中绿色的像素由原图像中蓝色标记的像素计算得到. 通用线性邻域滤波是一种常用的邻域算子,输入像素加权得到输出像素: 其中权重核   为“滤波系数”.上面的式子可以简记为: [方框滤波] 最简单的线性滤波是移动平均或方框滤波,用 窗口中的像素值平均后输出,核函数

双边滤波CUDA优化——BilateralFilter CUDA

=======双边滤波概述======= 双边滤波(Bilateral filter)是一种可以保边去噪的滤波器.之所以可以达到此去噪效果,是因为滤波器是由两个函数构成.一个函数是由几何空间距离决定滤波器系数.另一个由像素差值决定滤波器系数.可以与其相比较的两个filter:高斯低通滤波器(http://en.wikipedia.org/wiki/Gaussian_filter)和α-截尾均值滤波器(去掉百分率为α的最小值和最大之后剩下像素的均值作为滤波器). =======双边滤波公式====

学习《Hardware-Ef?cient Bilateral Filtering for Stereo Matching》一文笔记。

本人一直用博客园的编辑器西博客,由于CSDN和博客园模板不一样,为了您阅读的方便,建议您通过博客园的博客阅读本文:http://www.cnblogs.com/Imageshop/p/3839879.html 个人收藏了很多香港大学.香港科技大学以及香港中文大学里专门搞图像研究一些博士的个人网站,一般会不定期的浏览他们的作品,最近在看杨庆雄的网点时,发现他又写了一篇双边滤波的文章,并且配有源代码,于是下载下来研读了一番,这里仅仅对一些过程做简单的记录,以防时间久了忘记. 关于杨庆雄的相关文章可见

双边滤波算法原理及实现

双边滤波算法原理 双边滤波是一种非线性滤波器,它可以达到保持边缘.降噪平滑的效果.和其他滤波原理一样,双边滤波也是采用加权平均的方法,用周边像素亮度值的加权平均代表某个像素的强度,所用的加权平均基于高斯分布[1].最重要的是,双边滤波的权重不仅考虑了像素的欧氏距离(如普通的高斯低通滤波,只考虑了位置对中心像素的影响),还考虑了像素范围域中的辐射差异(例如卷积核中像素与中心像素之间相似程度.颜色强度,深度距离等),在计算中心像素的时候同时考虑这两个权重. 双边滤波的核函数是空间域核与像素范围域核的

OpenCv 026---高斯双边滤波

1 前备知识 此前的图像卷积处理无论是均值还是高斯都是属于模糊卷积,它们都有一个共同的特点就是模糊之后图像的边缘信息不复存在或者受到了破坏.而高斯双边滤波可以通过卷积处理实现图像模糊的同时减少图像边缘破坏,滤波之后的输出完整的保存了图像整体边缘(轮廓)信息,我们称这类滤波算法为边缘保留滤波算法(EPF).最常见的边缘保留滤波算法有以下几种: - 高斯双边模糊:高斯模糊是考虑图像空间位置对权重的影响,但是它没有考虑图像像素分布对图像卷积输出的影响,双边模糊考虑了像素值分布的影响,对像素值空间分布差