bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)

1833: [ZJOI2010]count 数字计数

题目:传送门



题解:

   今天是躲不开各种恶心DP了???

   %爆靖大佬啊!!!

   据说是数位DP裸题...emmm学吧学吧

   感觉记忆化搜索特别强:

   定义f[i][j][k]表示若前i个位置有k个j的此时的全局方案数,然后就可以记忆化搜索了(具体看代码吧)

  



代码:

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<cstdlib>
 4 #include<cmath>
 5 #include<algorithm>
 6 using namespace std;
 7 typedef long long LL;
 8 LL f[15][11][15],a[15];
 9 LL n,m;
10 LL dfs(int pos,int x,int sum,bool ld,bool lt)//ld表示当前情况是否要考虑前导0,lt表示的是枚举数字的上限是否有规定
11 {
12     if(pos==0)return sum;
13     if(ld==false && lt==false && f[pos][x][sum]!=-1)return f[pos][x][sum];
14     LL up=9,ans=0;if(lt==true)up=a[pos];
15     for(int i=0;i<=up;i++)
16     {
17         int ss=sum;bool bk1=false,bk2=false;
18         if(i==x)ss++;
19         if(ld==true && i==0){bk1=true;if(x==0)ss--;}
20         if(lt==true && i==a[pos])bk2=true;
21         ans+=dfs(pos-1,x,ss,bk1,bk2);
22     }
23     if(ld==false && lt==false)f[pos][x][sum]=ans;
24     return ans;
25 }
26 LL sol(LL x,int y)
27 {
28     int pos=0;
29     while(x){a[++pos]=x%10;x/=10;}
30     return dfs(pos,y,0,1,1);
31 }
32 int main()
33 {
34     memset(f,-1,sizeof(f));
35     scanf("%lld%lld",&n,&m);
36     for(int i=0;i<9;i++)printf("%lld ",sol(m,i)-sol(n-1,i));
37     printf("%lld\n",sol(m,9)-sol(n-1,9));
38     return 0;
39 }

原文地址:https://www.cnblogs.com/CHerish_OI/p/8807509.html

时间: 2024-10-21 10:47:18

bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)的相关文章

BZOJ1833: [ZJOI2010]count 数字计数 (数位dp)

传送门 数位dp... ...大概都是这个套路吧... ... 写这个的时候直接水了一发... ...我也不知道自己写的是不是dp... ... 大概是主要内容和dp关系不大的dp... ... mark代码..细长的代码真是丑啊..换行太频繁了.... 1 #include<cmath> 2 #include<cstdio> 3 #include<cstring> 4 #include<iostream> 5 #include<algorithm&g

【BZOJ-1833】count数字计数 数位DP

1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 2494  Solved: 1101[Submit][Status][Discuss] Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. Output 输出文件中包含一行10个整数,分别表示0-9在[a,b]中出现了多少次.

BZOJ 1833 ZJOI2010 count 数字计数 数位DP

题目大意:求[a,b]间所有的整数中0~9每个数字出现了几次 令f[i]为i位数(算前导零)中每个数出现的次数(一定是相同的,所以只记录一个就行了) 有f[i]=f[i-1]*10+10^(i-1) 然后照例十进制拆分 其中计算[0,999...9]的时候要从1~9枚举最高位,然后其余位调用f[i-1]即可 剩余部分已知位直接乘,未知位调用f[i] #include<cstdio> #include<cstring> #include<iostream> #includ

[hihocoder 1033]交错和 数位dp/记忆化搜索

#1033 : 交错和 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一个数 x,设它十进制展从高位到低位上的数位依次是 a0,?a1,?...,?an?-?1,定义交错和函数: f(x)?=?a0?-?a1?+?a2?-?...?+?(?-?1)n?-?1an?-?1 例如: f(3214567)?=?3?-?2?+?1?-?4?+?5?-?6?+?7?=?4 给定 输入 输入数据仅一行包含三个整数,l,?r,?k(0?≤?l?≤?r?≤?1018,?|k|

HDU 2089 不要62(数位dp&amp;记忆化搜索)

题目链接:[kuangbin带你飞]专题十五 数位DP C - 不要62 题意 杭州人称那些傻乎乎粘嗒嗒的人为62(音:laoer). 杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除个别的士司机和乘客的心理障碍,更安全地服务大众. 不吉利的数字为所有含有4或62的号码.例如: 62315 73418 88914 都属于不吉利号码.但是,61152虽然含有6和2,但不是62连号,所以不属于不吉利数字之列. 你的任务是,对于每次给

HDU 3652 B-number(数位dp&amp;记忆化搜索)

题目链接:[kuangbin带你飞]专题十五 数位DP G - B-number 题意 求1-n的范围里含有13且能被13整除的数字的个数. 思路 首先,了解这样一个式子:a%m == ((b%m)*c+d)%m; 式子的正确是显然的,就不证明了. 那么判断数是否可以被13整除就可以分解为一位一位进行处理. 当然,我们也只需要储存取余后的值. dfs(len, num, mod, flag) mod记录数字对13取余后的值 len表示当前位数 num==0 不含13且上一位不为1 pre==1

hdu 5787 数位dp,记忆化搜索

题意:求区间[l,r]内有多少个数符合,这个数的任意的相邻k位数(digits),这k个数都两两不相等 l,r范围是1~1e18,k是2~5 思路:数位DP,因为K<=5,我们最多需要保存下来当前位的前4位就足够了.因为dp[pos][p1][p2][p3][p4]表示,现在枚举取第pos位,pos位之前的四位分别为p1,p2,p3,p4,p4是pos的上一位.那么p1~p4的范围就是0~9,但是因为总位数小于当前数字的位数的数也要进行枚举,需要一个数字来区分它是前导0还是在中间时为0,令p =

数位dp/记忆化搜索

一.引例 #1033 : 交错和 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一个数 x,设它十进制展从高位到低位上的数位依次是 a0, a1, ..., an - 1,定义交错和函数: f(x) = a0 - a1 + a2 - ... + ( - 1)n - 1an - 1 例如: f(3214567) = 3 - 2 + 1 - 4 + 5 - 6 + 7 = 4 给定 l, r, k,求在 [l, r] 区间中,所有 f(x) = k 的 x 的和,

【每日dp】 Gym - 101889E Enigma 数位dp 记忆化搜索

题意:给你一个长度为1000的串以及一个数n 让你将串中的'?'填上数字 使得该串是n的倍数而且最小(没有前导零) 题解:dp,令dp[len][mod]为是否出现过 填到第len位,余数为mod 的状态(dp=0 or 1) 用记忆化搜索来实现,dfs返回1或0. 如果搜到最后一位并且余数为0,返回1. 如果搜到已经更新过的dp状态,直接返回0. 将mod作为全局变量,不断更新mod. 对于每一位 的'? ' 暴力枚举0~9 #include<stdio.h> #include<std