实验二 作业模拟调度程序

一、目的和要求

1. 实验目的

(1)加深对作业调度算法的理解;

(2)进行程序设计的训练。

2.实验要求

用高级语言编写一个或多个作业调度的模拟程序。

单道批处理系统的作业调度程序。作业一投入运行,它就占有计算机的一切资源直到作业完成为止,因此调度作业时不必考虑它所需要的资源是否得到满足,它所运行的时间等因素。

     作业调度算法:

1)        采用先来先服务(FCFS)调度算法,即按作业到达的先后次序进行调度。总是首先调度在系统中等待时间最长的作业。

2)        短作业优先 (SJF) 调度算法,优先调度要求运行时间最短的作业。

3)        响应比高者优先(HRRN)调度算法,为每个作业设置一个优先权(响应比),调度之前先计算各作业的优先权,优先数高者优先调度。RP (响应比)= 作业周转时间 / 作业运行时间=1+作业等待时间/作业运行时间

每个作业由一个作业控制块JCB表示,JCB可以包含以下信息:作业名、提交(到达)时间、所需的运行时间、所需的资源、作业状态、链指针等等。

作业的状态可以是等待W(Wait)、运行R(Run)和完成F(Finish)三种之一。每个作业的最初状态都是等待W。

一、       模拟数据的生成

1.            允许用户指定作业的个数(2-24),默认值为5。

2.            允许用户选择输入每个作业的到达时间和所需运行时间。

3.            (**)从文件中读入以上数据。

4.            (**)也允许用户选择通过伪随机数指定每个作业的到达时间(0-30)和所需运行时间(1-8)。

二、       模拟程序的功能

1.            按照模拟数据的到达时间和所需运行时间,执行FCFS, SJF和HRRN调度算法,程序计算各作业的开始执行时间,各作业的完成时间,周转时间和带权周转时间(周转系数)。

2.            动态演示每调度一次,更新现在系统时刻,处于运行状态和等待各作业的相应信息(作业名、到达时间、所需的运行时间等)对于HRRN算法,能在每次调度时显示各作业的响应比R情况。

3.            (**)允许用户在模拟过程中提交新作业。

4.            (**)编写并调度一个多道程序系统的作业调度模拟程序。 只要求作业调度算法:采用基于先来先服务的调度算法。 对于多道程序系统,要假定系统中具有的各种资源及数量、调度作业时必须考虑到每个作业的资源要求。

三、       模拟数据结果分析

1.            对同一个模拟数据各算法的平均周转时间,周转系数比较。

2.            (**)用曲线图或柱形图表示出以上数据,分析算法的优点和缺点。

四、       实验准备


序号


准备内容


完成情况


1


什么是作业?


2


一个作业具备什么信息?


3


为了方便模拟调度过程,作业使用什么方式的数据结构存放和表示?JCB


4


操作系统中,常用的作业调度算法有哪些?


5


如何编程实现作业调度算法?


6


模拟程序的输入如何设计更方便、结果输出如何呈现更好?

 

五、       其他要求

1.            完成报告书,内容完整,规格规范。

2.            实验须检查,回答实验相关问题。

注:带**号的条目表示选做内容。

二、实验内容

根据指定的实验课题,完成设计、编码和调试工作,完成实验报告。

、实验环境

可以采用TC,也可以选用Windows下的利用各种控件较为方便的VB,VC等可视化环境。也可以自主选择其他实验环境。

四、实验原理及核心算法参考程序段

单道FCFS算法:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define MAX 100
typedef struct
{
char name[4];//进程名
int starttime;//到达系统时间
int needtime;//运行时间
int runtime;//周转时间
int endtime;//完成时间
int waittime;//等待时间
double XYB;//响应比
double DQZZ_Time;//带权周转时间
}pr;

pr a[MAX];

void input(int n)
{
    int i;
    for(i=0;i<n;i++)
    {
    printf("name:");
    scanf("%s",&a[i].name);
    printf("\n");

    printf("starttime:");
    scanf("%d",&a[i].starttime);
    printf("\n");

    printf("needtime:");
    scanf("%d",&a[i].needtime);
    printf("\n");
    }
}

void FCFS(int n)//先来先服务
{
    int i,j,time1,time2;
    char temp[4];
     for(i=0;i<n-1;i++)
     {
         for(j=0;j<n-i-1;j++)
             if(a[j].starttime>a[j+1].starttime)
             {
                time1=a[j].starttime;//开始时间进行互换
                a[j].starttime=a[j+1].starttime;
                a[j+1].starttime=time1;

                time2=a[j].needtime;//CPU时间换
                a[j].needtime=a[j+1].needtime;
                a[j+1].needtime=time2;

                strcpy(temp,a[j].name);   //把从src地址开始且含有‘\0‘结束符的字符串复制到以dst开始的地址空间。
                strcpy(a[j].name,a[j+1].name);
                strcpy(a[j+1].name,temp);
             }
     }
    for(i=0;i<n;i++)
     {
     //第一个进程
         if(i==0)
         {
             a[i].runtime=a[i].needtime;
             a[i].endtime=a[i].starttime+a[i].runtime;
         }
         else
         {
             if(a[i].starttime>a[i-1].endtime)
             {
                 a[i].runtime=a[i].needtime;
                 a[i].endtime=a[i].starttime+a[i].runtime;
             }
             else
             {
                 a[i].runtime=a[i].needtime+a[i-1].endtime-a[i].starttime;
                 a[i].endtime=a[i].starttime+a[i].runtime;
             }
         }
         a[i].DQZZ_Time=a[i].runtime*1.0/a[i].needtime;
     }
}

//最短作业优先,假设在前3个作业运行完之前所有作业均已到达
void SJF(int n)
{
int i,j,time1,time2;
int b=0,c=0,d=0;
char temp[4]; 

//先按到达时间排序
    for(i=0;i<n-1;i++)
    {
           for(j=0;j<n-i-1;j++)
             if(a[j].starttime>a[j+1].starttime)
             {
                time1=a[j].starttime;
                a[j].starttime=a[j+1].starttime;
                a[j+1].starttime=time1;

                time2=a[j].needtime;
                a[j].needtime=a[j+1].needtime;
                a[j+1].needtime=time2;

                strcpy(temp,a[j].name);
                strcpy(a[j].name,a[j+1].name);
                strcpy(a[j+1].name,temp);
             }
    }

    a[0].endtime=a[0].starttime+a[0].needtime;

    for(i=1;i<n;i++)
    {
        if(a[i].starttime<a[0].endtime)
            b++;      //作业到达但第0个作业还在运行时
            //用b统计需等待作业0运行的作业个数
    }

      for(i=1;i<b+1;i++)
      {//已经到达的但要等待第0个作业运行完的作业按最短运行时间排序
          for(j=1;j<b+1-1;j++)
          {
          if(a[j].needtime>a[j+1].needtime)
          {
                   time1=a[j].starttime;
                a[j].starttime=a[j+1].starttime;
                a[j+1].starttime=time1;
                time2=a[j].needtime;
                a[j].needtime=a[j+1].needtime;
                a[j+1].needtime=time2;
                strcpy(temp,a[j].name);
                strcpy(a[j].name,a[j+1].name);
                strcpy(a[j+1].name,temp);
          }
          }
    }

    if(a[1].starttime>a[0].endtime) a[1].endtime=a[1].starttime+a[1].needtime;
    else a[1].endtime=a[0].endtime+a[1].needtime;

    for(i=2;i<n;i++)
    {
        if(a[i].starttime<a[1].endtime)
          c++;      //作业到达但第1个作业还在运行时
            //用c统计需等待作业1运行的作业个数
    }

 for(i=2;i<c+2;i++)
    {//已经到达的但要等待第1个作业运行完的作业按最短运行时间排序
         for(j=2;j<c+2-1;j++)
          {
          if(a[j].needtime>a[j+1].needtime)
          {
                   time1=a[j].starttime;
                a[j].starttime=a[j+1].starttime;
                a[j+1].starttime=time1;
                time2=a[j].needtime;
                a[j].needtime=a[j+1].needtime;
                a[j+1].needtime=time2;
                strcpy(temp,a[j].name);
                strcpy(a[j].name,a[j+1].name);
                strcpy(a[j+1].name,temp);
          }
          }
    }

    if(a[2].starttime>a[1].endtime) a[2].endtime=a[2].starttime+a[2].needtime;
    else a[2].endtime=a[1].endtime+a[2].needtime;

        for(i=3;i<n;i++)
    {
        if(a[i].starttime<a[2].endtime)
         d++;      //作业到达但第2个作业还在运行时
            //用d统计需等待作业2运行的作业个数
    }

 for(i=3;i<d+3;i++)
    {//已经到达的但要等待第2个作业运行完的作业按最短运行时间排序
         for(j=3;j<d+3-1;j++)
          {
          if(a[j].needtime>a[j+1].needtime)
          {
                   time1=a[j].starttime;
                a[j].starttime=a[j+1].starttime;
                a[j+1].starttime=time1;
                time2=a[j].needtime;
                a[j].needtime=a[j+1].needtime;
                a[j+1].needtime=time2;
                strcpy(temp,a[j].name);
                strcpy(a[j].name,a[j+1].name);
                strcpy(a[j+1].name,temp);
          }
          }
    }

    for(i=0;i<n;i++)
    {
      if(a[i].starttime>a[i-1].endtime)
      {
        a[i].endtime=a[i].starttime+a[i].needtime;
        a[i].runtime=a[i].needtime;
      }
      else
      {
         a[i].endtime=a[i-1].endtime+a[i].needtime;
         a[i].runtime=a[i].endtime-a[i].starttime;
      }
      a[i].DQZZ_Time=a[i].runtime*1.0/a[i].needtime;
    }
}

//最高响应比优先,只写了按到达时间的顺序前4个作业有效
void HRRF(int n)
{
   int i,j,time1,time2;
   char temp[4]; 

//先按到达时间排序
    for(i=0;i<n-1;i++)
    {
           for(j=0;j<n-i-1;j++)
             if(a[j].starttime>a[j+1].starttime)
             {
                time1=a[j].starttime;
                a[j].starttime=a[j+1].starttime;
                a[j+1].starttime=time1;
                time2=a[j].needtime;
                a[j].needtime=a[j+1].needtime;
                a[j+1].needtime=time2;
                strcpy(temp,a[j].name);
                strcpy(a[j].name,a[j+1].name);
                strcpy(a[j+1].name,temp);
             }
    }

    a[0].endtime=a[0].starttime+a[0].needtime;

    for(i=1;i<n;i++)
    {
     a[i].waittime=a[0].endtime-a[i].starttime;
     a[i].XYB=1+(a[i].waittime/a[i].needtime);
    }
    //运行完作业0后,剩下的作业按响应比高到低排序
    for(i=1;i<n-1;i++)
    {
        for(j=1;j<n-i-1;j++)
        {
        if(a[j].XYB<a[j+1].XYB)
        {
                time1=a[j].starttime;
                a[j].starttime=a[j+1].starttime;
                a[j+1].starttime=time1;

                time2=a[j].needtime;
                a[j].needtime=a[j+1].needtime;
                a[j+1].needtime=time2;

                strcpy(temp,a[j].name);
                strcpy(a[j].name,a[j+1].name);
                strcpy(a[j+1].name,temp);
        }
        }
    }

    a[1].endtime=a[0].endtime+a[1].needtime;
    for(i=2;i<n;i++)
    {
     a[i].waittime=a[1].endtime-a[i].starttime;
     a[i].XYB=1+(a[i].waittime/a[i].needtime);
    }
    //运行完作业1后,剩下的作业按响应比高到低排序
    for(i=2;i<n-1;i++)
    {
        for(j=2;j<n-i-1;j++)
        {
        if(a[j].XYB<a[j+1].XYB)
        {
                time1=a[j].starttime;
                a[j].starttime=a[j+1].starttime;
                a[j+1].starttime=time1;
                time2=a[j].needtime;
                a[j].needtime=a[j+1].needtime;
                a[j+1].needtime=time2;
                strcpy(temp,a[j].name);
                strcpy(a[j].name,a[j+1].name);
                strcpy(a[j+1].name,temp);
        }
        }
    }

    a[2].endtime=a[1].endtime+a[2].needtime;
    for(i=3;i<n;i++)
    {
     a[i].waittime=a[2].endtime-a[i].starttime;
     a[i].XYB=1+(a[i].waittime/a[i].needtime);
    }
    //运行完作业2后,剩下的作业按响应比高到低排序
    for(i=3;i<n-1;i++)
    {
        for(j=3;j<n-i-1;j++)
        {
        if(a[j].XYB<a[j+1].XYB)
        {
                time1=a[j].starttime;
                a[j].starttime=a[j+1].starttime;
                a[j+1].starttime=time1;

                time2=a[j].needtime;
                a[j].needtime=a[j+1].needtime;
                a[j+1].needtime=time2;

                strcpy(temp,a[j].name);
                strcpy(a[j].name,a[j+1].name);
                strcpy(a[j+1].name,temp);
        }
        }
    }

    a[3].endtime=a[2].endtime+a[3].needtime;
    for(i=4;i<n;i++)
    {
     a[i].waittime=a[3].endtime-a[i].starttime;
     a[i].XYB=1+(a[i].waittime/a[i].needtime);
    }
    //运行完作业3后,剩下的作业按响应比高到低排序
    for(i=4;i<n-1;i++)
    {
        for(j=4;j<n-i-1;j++)
        {
        if(a[j].XYB<a[j+1].XYB)
        {
                time1=a[j].starttime;
                a[j].starttime=a[j+1].starttime;
                a[j+1].starttime=time1;
                time2=a[j].needtime;
                a[j].needtime=a[j+1].needtime;
                a[j+1].needtime=time2;
                strcpy(temp,a[j].name);
                strcpy(a[j].name,a[j+1].name);
                strcpy(a[j+1].name,temp);
        }
        }
    }

    for(i=0;i<n;i++)
    {
      if(a[i].starttime>a[i-1].endtime)
      {
        a[i].endtime=a[i].starttime+a[i].needtime;
        a[i].runtime=a[i].needtime;
      }
      else
      {
         a[i].endtime=a[i-1].endtime+a[i].needtime;
         a[i].runtime=a[i].endtime-a[i].starttime;
      }
      a[i].DQZZ_Time=a[i].runtime*1.0/a[i].needtime;
    }
}

void output(int n)
{    

   int sum_Time=0;//作业总周转时间
   double sum_DQ=0;//作业总带权周转时间
   int i;
   printf("\tname  starttime  needtime  runtime  endtime \tDQZZ_Time\n");
    for(i=0;i<n;i++)
    {
    printf("%8s%10d%10d%10d%10d\t%10lf\n",a[i].name,a[i].starttime,a[i].needtime,a[i].runtime,a[i].endtime,a[i].DQZZ_Time);
    sum_Time+=a[i].runtime;
    sum_DQ+=a[i].DQZZ_Time;
    }
     printf("平均作业周转时间为:%.2lf\n",sum_Time*1.0/n);
     printf("平均带权作业周转时间为:%.2lf\n",sum_DQ*1.0/n);
     printf("\n");
}

int main()
{
    int n,i;
    printf("请输入进程数n:");
    scanf("%d",&n);
    input(n);
    output(n);
    while(1)
    {
    printf("1.先来先服务FCFS\n2.最短作业优先SJF\n3.最高响应比优先\n4.退出\n");
    scanf("%d",&i);
    if(i==1)
    {
    printf("\t\t\t\t1.先来先服务FCFS\n");
    FCFS(n);
    output(n);
    }
    if(i==2)
    {
    printf("\t\t\t\t2.最短作业优先SJF\n");
    SJF(n);
    output(n);
    }
    if(i==3)
    {
    printf("\t\t\t\t3.最高响应比优先\n");
    HRRF(n);
    output(n);
    }
    if(i==4)
    {
    exit(0);
    }
    }
}

时间: 2024-10-08 09:00:22

实验二 作业模拟调度程序的相关文章

11 11 实验二 作业调度模拟实验

一.目的和要求 1. 实验目的 (1)加深对作业调度算法的理解: (2)进行程序设计的训练. 2.实验要求 用高级语言编写一个或多个作业调度的模拟程序. 单道批处理系统的作业调度程序.作业一投入运行,它就占有计算机的一切资源直到作业完成为止,因此调度作业时不必考虑它所需要的资源是否得到满足,它所运行的时间等因素. 作业调度算法: 1) 采用先来先服务(FCFS)调度算法,即按作业到达的先后次序进行调度.总是首先调度在系统中等待时间最长的作业. 2) 短作业优先 (SJF) 调度算法,优先调度要求

实验二 作业调度模拟实验

实验二.作业调度模拟实验 13物联网  201306104148 李小娜 一. 实验目的 (1)加深对作业调度算法的理解: (2)进行程序设计的训练. 二. 实验内容和要求 用高级语言编写一个或多个作业调度的模拟程序. 单道批处理系统的作业调度程序.作业一投入运行,它就占有计算机的一切资源直到作业完成为止,因此调度作业时不必考虑它所需要的资源是否得到满足,它所运行的时间等因素. 作业调度算法: 1) 采用先来先服务(FCFS)调度算法,即按作业到达的先后次序进行调度.总是首先调度在系统中等待时间

1111实验二 作业调度模拟实验

实验二.作业调度模拟实验 物联网工程 张怡 201306104149 一.实验目的  (1)加深对作业调度算法的理解: (2)进行程序设计的训练. 二.实验内容和要求 1.至少用三种调度算法: 1) 采用先来先服务(FCFS)调度算法,即按作业到达的先后次序进行调度.总是首先调度在系统中等待时间最长的作业. 2) 短作业优先 (SJF) 调度算法,优先调度要求运行时间最短的作业. 3) 响应比高者优先(HRRN)调度算法,为每个作业设置一个优先权(响应比),调度之前先计算各作业的优先权,优先数高

实验三 进程模拟调度程序

1.    目的和要求 1.1.           实验目的 用高级语言完成一个进程调度程序,以加深对进程的概念及进程调度算法的理解. 1.2.           实验要求 1.2.1例题:设计一个有 N个进程并发执行的进程调度模拟程序. 进程调度算法:采用最高优先级优先的调度算法(即把处理机分配给优先级最高的进程)和先来先服务(若优先级相同)算法. (1).  每个进程有一个进程控制块(PCB)表示.进程控制块包含如下信息:进程名.优先级.到达时间.需要运行时间.已用CPU时间.进程状态等

Scala实验二——2.模拟图形绘制

题目: 对于一个图形绘制程序,用下面的层次对各种实体进行抽象.定义一个 Drawable 的特 质,其包括一个 draw 方法,默认实现为输出对象的字符串表示.定义一个 Point 类表示点, 其混入了 Drawable 特质,并包含一个 shift 方法,用于移动点.所有图形实体的抽象类为 Shape,其构造函数包括一个 Point 类型,表示图形的具体位置(具体意义对不同的具体图 形不一样).Shape 类有一个具体方法 moveTo 和一个抽象方法 zoom,其中 moveTo 将图形从

实验二 作业调度

一.目的和要求 1. 实验目的 (1)加深对作业调度算法的理解: (2)进行程序设计的训练. 2.实验要求 用高级语言编写一个或多个作业调度的模拟程序. 单道批处理系统的作业调度程序.作业一投入运行,它就占有计算机的一切资源直到作业完成为止,因此调度作业时不必考虑它所需要的资源是否得到满足,它所运行的时间等因素.      作业调度算法: 1)        采用先来先服务(FCFS)调度算法,即按作业到达的先后次序进行调度.总是首先调度在系统中等待时间最长的作业. 2)        短作业优

操作系统实验二(调度算法模拟-先进先出-时间片轮转法-优先服务调度算法)

实验二 进程调度 一.     实验目的 1.       理解进程运行的并发性. 2.       理解处理器的三级调度. 3.       掌握先来先服务的进程调度算法. 4.       掌握短进程优先的进程调度算法. 5.       掌握时间片轮转的进程调度算法. 二.     实验设备 1.     安装windows或者linux操作系统的PC机 2.     C程序编译环境 三.     实验内容 用c语言编程模拟实现至少一个操作系统的常见进程调度算法.常见的进程调度算法有先来先

十一假期作业(实验一、实验二)

实验一 实验1-1 实验要求:编程打印5行的倒三角,第一行打印九个*,第二行打印七个*,......第五行打印一个* 代码: #include<stdio.h> int main() { printf("*********\n"); printf(" *******\n"); printf(" *****\n"); printf(" ***\n"); printf(" *\n"); return

实验二 作业调度模拟程序

实验二 作业调度模拟程序 一.        实验目的 (1)加深对作业调度算法的理解: (2)进行程序设计的训练. 二.        实验内容和要求 用高级语言编写一个或多个作业调度的模拟程序. 单道批处理系统的作业调度程序.作业一投入运行,它就占有计算机的一切资源直到作业完成为止,因此调度作业时不必考虑它所需要的资源是否得到满足,它所运行的时间等因素.      作业调度算法: 1)      采用先来先服务(FCFS)调度算法,即按作业到达的先后次序进行调度.总是首先调度在系统中等待时间