hdu 2767 Proving Equivalences 强连通缩点

给出n个命题,m个推导,问最少增加多少条推导,可以使所有命题都能等价(两两都能互推)

既给出有向图,最少加多少边,使得原图变成强连通。

首先强连通缩点,对于新图,每个点都至少要有一条出去的边和一条进来的边(这样才能保证它能到任意点和任意点都能到它)

所以求出新图中入度为0的个数,和出度为0的个数,添加的边就是从出度为0的指向入度为0的。这样还会有一点剩余,剩余的就乱连就行了。

所以只要求出2者的最大值就OK。

#include <iostream>
#include<cstring>
#include<cstdio>
#include<string>
#include<algorithm>
using namespace std;
#define MAXN 30005
#define MAXM 200005
struct node
{
    int to,next;
}edge[MAXM];
int head[MAXN],en;
int low[MAXN],dfn[MAXN],stack[MAXN],top,set[MAXN],col,num;
bool vis[MAXN],instack[MAXN];
int in[MAXN],out[MAXN];
int n;
int m;
void addedge(int a,int b)
{
    edge[en].to=b;
    edge[en].next=head[a];
    head[a]=en++;
}
void tarjan(int u)
{
    vis[u]=1;
    dfn[u]=low[u]=++num;
    instack[u]=true;
    stack[++top]=u;
    for(int i=head[u];i!=-1;i=edge[i].next)
    {
        int v=edge[i].to;
        if(!vis[v])
        {
            tarjan(v);
            low[u]=min(low[u],low[v]);
        }
        else
            if(instack[v])
                low[u]=min(dfn[v],low[u]);
    }
    if(dfn[u]==low[u])
    {
        int j;
        col++;
        do
        {
            j=stack[top--];
            instack[j]=false;
            set[j]=col;
        }
        while (j!=u);
    }
}
void init()
{
    en=top=col=num=0;
    memset(head,-1,sizeof(head));
    memset(instack,0,sizeof(instack));
    memset(vis,0,sizeof(vis));
    memset(set,-1,sizeof(set));
    memset(in,0,sizeof(in));
    memset(out,0,sizeof(out));
}
int main()
{
    int a,b;
    int cas;
    scanf("%d",&cas);
    while(cas--)
    {
        scanf("%d%d",&n,&m);
        init();
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d",&a,&b);
            addedge(a,b);
        }
        for(int i=1;i<=n;i++)
            if(!vis[i])tarjan(i);
        if(col<=1) {puts("0");continue;}
        int ans=0;
        for(int i=1;i<=n;i++)
            for(int j=head[i];~j;j=edge[j].next)
            {
                int to=edge[j].to;
                if(set[to]!=set[i])
                {
                    in[set[to]]++;
                    out[set[i]]++;
                }
            }
        int t1=0,t2=0;
        for(int i=1;i<=col;i++)
        {
            if(!in[i]) t1++;
            if(!out[i]) t2++;
        }
        printf("%d\n",max(t1,t2));
    }
    return 0;
}
/*
3 3
1 2
2 1
1 2
*/

hdu 2767 Proving Equivalences 强连通缩点

时间: 2024-10-24 16:02:55

hdu 2767 Proving Equivalences 强连通缩点的相关文章

hdu 2767 Proving Equivalences(强连通入门题)

1 /************************************************* 2 Proving Equivalences(hdu 2767) 3 强连通入门题 4 给个有向图,求至少加多少条边使得图是所有点都是强连通的 5 由a->b->c->a易知n个点至少要n条边,每个出度和入度都要大 6 于1.先求所有所有强连通分量,把每个强连通分量看成一个点 7 在找每个点的出度和入度,最后还差的出度和入度的最大值就是 8 答案. 9 10 ************

HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)

HDU 2767 Proving Equivalences(强连通 Tarjan+缩点) ACM 题目地址:HDU 2767 题意: 给定一张有向图,问最少添加几条边使得有向图成为一个强连通图. 分析: Tarjan入门经典题,用tarjan缩点,然后就变成一个有向无环图(DAG)了. 我们要考虑的问题是让它变成强连通,让DAG变成强连通就是把尾和头连起来,也就是入度和出度为0的点. 统计DAG入度和出度,然后计算头尾,最大的那个就是所求. 代码: /* * Author: illuz <iil

HDU 2767 Proving Equivalences (强联通)

http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2926    Accepted Submission(s): 1100 Problem Description Consider the followi

HDU 2767 Proving Equivalences(强联通缩点)

Proving Equivalences Problem Description Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matrix. Prove that the following statements are equivalent: 1. A is invertible.2. Ax = b has exactly one solution

HDU 2767 Proving Equivalences

 Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 3676    Accepted Submission(s): 1352 Problem Description Consider the following exercise, found in a generic linear algeb

HDU 2767 Proving Equivalences 图论scc缩点

问一个图,最少需要加多少条边,使得这个图强联通. Tarjan缩点,重建图,令a=入度为0的scc个数,b=出度为0的scc个数,ans=max(a,b): 若图scc=1,本身强联通,ans=0: 1 #include<bits/stdc++.h> 2 using namespace std; 3 const int MAXN = 20010;//点数 4 const int MAXM = 200100;//边数 5 struct Edge { 6 int to,next; 7 }edge[

hdu - 2667 Proving Equivalences(强连通)

http://acm.hdu.edu.cn/showproblem.php?pid=2767 求至少添加多少条边才能变成强连通分量.统计入度为0的点和出度为0的点,取最大值即可. 1 #include <iostream> 2 #include <cstdio> 3 #include <cmath> 4 #include <vector> 5 #include <cstring> 6 #include <algorithm> 7 #i

UvaLive 4287 Proving Equivalences 强连通缩点

原题链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2288 题意: 给你一个有向图,问你至少需要添加多少条边,使得整个图强连通. 题解: 就..直接缩点,令缩点后入度为0的点有a个,出度为0的点有b个,答案就是max(a,b) 代码: #include<iostream> #include<cstri

HDU 2767 Proving Equivalences (Tarjan縮點)

Time limit :2000 ms Memory limit :32768 kB Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matrix. Prove that the following statements are equivalent: 1. A is invertible. 2. Ax = b has exactly one soluti