Using Gazebo plugins with ROS

Camera

RRBot Example

rrbot.xacro

  <joint name="camera_joint" type="fixed">
    <axis xyz="0 1 0" />
    <origin xyz="${camera_link} 0 ${height3 - axel_offset*2}" rpy="0 0 0"/>
    <parent link="link3"/>
    <child link="camera_link"/>
  </joint>

  <!-- Camera -->
  <link name="camera_link">
    <collision>
      <origin xyz="0 0 0" rpy="0 0 0"/>
      <geometry>
    <box size="${camera_link} ${camera_link} ${camera_link}"/>
      </geometry>
    </collision>

    <visual>
      <origin xyz="0 0 0" rpy="0 0 0"/>
      <geometry>
    <box size="${camera_link} ${camera_link} ${camera_link}"/>
      </geometry>
      <material name="red"/>
    </visual>

    <inertial>
      <mass value="1e-5" />
      <origin xyz="0 0 0" rpy="0 0 0"/>
      <inertia ixx="1e-6" ixy="0" ixz="0" iyy="1e-6" iyz="0" izz="1e-6" />
    </inertial>
  </link>

rrbot.gazebo

 <!-- camera -->
  <gazebo reference="camera_link">
    <sensor type="camera" name="camera1">
      <update_rate>30.0</update_rate>
      <camera name="head">
        <horizontal_fov>1.3962634</horizontal_fov>
        <image>
          <width>800</width>
          <height>800</height>
          <format>R8G8B8</format>
        </image>
        <clip>
          <near>0.02</near>
          <far>300</far>
        </clip>
        <noise>
          <type>gaussian</type>
          <!-- Noise is sampled independently per pixel on each frame.
               That pixel's noise value is added to each of its color
               channels, which at that point lie in the range [0,1]. -->
          <mean>0.0</mean>
          <stddev>0.007</stddev>
        </noise>
      </camera>
      <plugin name="camera_controller" filename="libgazebo_ros_camera.so">
        <alwaysOn>true</alwaysOn>
        <updateRate>0.0</updateRate>
        <cameraName>rrbot/camera1</cameraName>
        <imageTopicName>image_raw</imageTopicName>
        <cameraInfoTopicName>camera_info</cameraInfoTopicName>
        <frameName>camera_link</frameName>
        <hackBaseline>0.07</hackBaseline>
        <distortionK1>0.0</distortionK1>
        <distortionK2>0.0</distortionK2>
        <distortionK3>0.0</distortionK3>
        <distortionT1>0.0</distortionT1>
        <distortionT2>0.0</distortionT2>
      </plugin>
    </sensor>
  </gazebo>
时间: 2024-07-28 14:56:58

Using Gazebo plugins with ROS的相关文章

Using Gazebo plugins with ROS 2

RRBot Example <joint name="hokuyo_joint" type="fixed"> <axis xyz="0 1 0" /> <origin xyz="0 0 ${height3 - axel_offset/2}" rpy="0 0 0"/> <parent link="link3"/> <child lin

Overview of Gazebo Plugins

Plugin Types There are currently 5 types of plugins World Model Sensor System. Visual. Hello WorldPlugin! #include <gazebo/gazebo.hh> namespace gazebo { class WorldPluginTutorial : public WorldPlugin { public: WorldPluginTutorial() : WorldPlugin() {

ROS和Gazebo进行机器人仿真(二)

一.在Gazebo中使用ROS控制器 在本节中,我们将讨论如何在Gazebo中让机器人的每个关节运动. 为了让关节动起来,我们需要分配一个ROS控制器,尤其是,我们需要为每个关节连上一个与transmission标签内指定的硬件接口兼容的控制器. ROS控制器主要由一套反馈机构组成,可以接受某一设定点,并用执行机构的反馈控制输出. ROS控制器使用硬件接口与硬件交互,硬件接口的主要功能是充当ROS控制器与真实或仿真硬件之间的中介,根据ROS控制器生成的数据来分配 资源控制它. 在本机器人,我们定

170111-机械臂gazebo基础

前言 依然是基础 参考 Mastering ROS for Robotics Programming.2015 学习记录 概述 需要安装以下包 sudo apt-get install ros-jade-gazebo-ros-pkgs ros-jade-gazeboros ros-jade-gazebo-msgs ros-jade-gazebo-plugins gazebo_ros_msgs: ROS包,为Gazebo提供ros方面的接口 gazebo-msgs: 为ros提供gazebo方面的

第十八课 Gazebo仿真器

1.Gazebo概述 在Gazebo中的模拟效果是非常好的. 它的特性 Dynamics Simulation 直接控制物理引擎参数 Building Editor 无需代码即可在Gazebo中创建机器人模型(只用insert就可以插入各种模型,可以在基于Gazebo的云端中创建机器人模型) Advanced 3DGraphics 提高真实性 Sensors 提供激光雷达,摄像头,RGBD摄像头,IMU等传感器 Robot Models 提供多种机器人模型,包括PR2,iRobot,Create

ROS系统玩转自主移动机器人(5)-- ROS系统建模

注:本篇博文全部源码下载地址为:Git Repo传送门. 1. 下载到本地后解压到当前文件夹然后运行:catkin_make 编译. 2. 源码是在 Ubuntu14.04 + Indigo 环境下编写. 前面博文已经介绍了机器人平台的机械结构设计.嵌入式硬件平台的搭建等内容,从本片开始介绍本开源机器人平台ROS系统的相关程序,主要有: ROS系统建模: Gazebo仿真: ROS系统机器人SLAM框架: SLAM中Gmapping和地图构建: SLAM中AMCL算法: 机器人正逆运动学: 路径

4.9-Simulation in gazebo or webots

We can create the simulation model for a robotic arm by updating the existing robot description by adding simulation parameters. collision inertial tranmission joints linkd Gazebo Launch using ros controllers to actuate the robot model 先按照教科书上做的来试一下,

ROS机器人程序设计(原书第2版)补充资料 (柒) 第七章 3D建模与仿真 urdf Gazebo V-Rep Webots Morse

ROS机器人程序设计(原书第2版)补充资料 (柒) 第七章 3D建模与仿真 urdf Gazebo V-Rep Webots Morse 书中,大部分出现hydro的地方,直接替换为indigo或jade或kinetic,即可在对应版本中使用. 提供ROS接口的3D软件比较多,本章以最典型的Gazebo介绍为主,从Player/Stage/Gazebo发展而来,现在独立的机器人仿真开发环境,目前2016年最新版本Gazebo7.1配合ROS(kinetic)使用. 补充内容:http://blo

ROS(indigo)机器人操作系统学习有趣丰富的Gazebo仿真示例evarobot

一直在寻找一个示例可以将ROS学习中常用的基础内容大部分都包含进去,最好还包括Gazebo仿真, 这样即使没有硬件设备,也可以很好的学习ROS相关内容,但又必须有对应的硬件,便于后续研究. 这里,介绍一款意外发现的ROS的robot示例----evarobot---- 官方教程网址:http://wiki.ros.org/Robots/evarobot 仿真源码网址:https://github.com/inomuh/evarobot_simulator 下面进入正文: ROS(indigo)机