【noi2007】【社交网络】【最短路】

【问题描述】

在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象。不妨看这样的一个问题。在一个社交圈子里有n个人,人与人之间有不同程度的关系。我 们将这个关系网络对应到一个n个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两 个人之间的关系越密切。

我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路径上的其他结点为s和t的联系提供了某种便利, 即这些结点对于s 和t之间的联系有一定的重要程度。我们可以通过统计经过一个结点v的最短路径的数目来衡量该结点在社交网络中的重要程度。

考虑到两个结点A和B之间可能会有多条最短路径。我们修改重要程度的定义如下:

令Cs,t表示从s到t的不同的最短路的数目,Cs,t(v)表示经过v从s到t的最短路的数目;则定义

I(v)=∑s≠v,t≠vCs,t(v)Cs,t

为结点v在社交网络中的重要程度。

为了使I(v)和Cs,t(v)有意义,我们规定需要处理的社交网络都是连通的无向图,即任意两个结点之间都有一条有限长度的最短路径。

现在给出这样一幅描述社交网络s的加权无向图,请你求出每一个结点的重要程度。

【输入文件】

输入文件中第一行有两个整数,n和m,表示社交网络中结点和无向边的数目。在无向图中,我们将所有结点从1到n进行编号。

接下来m行,每行用三个整数a, b, c描述一条连接结点a和b,权值为c的无向边。注意任意两个结点之间最多有一条无向边相连,无向图中也不会出现自环(即不存在一条无向边的两个端点是相同的结点)。

【输出文件】

输出文件包括n行,每行一个实数,精确到小数点后3位。第i行的实数表示结点i在社交网络中的重要程度。

【样例输入】

4 4

1 2 1

2 3 1

3 4 1

4 1 1

【样例输出】

1.000

1.000

1.000

1.000

【样例说明】

社交网络如下图所示。

对于1号结点而言,只有2号到4号结点和4号到2号结点的最短路经过1号结点,而2号结点和4号结点之间的最短路又有2条。因而根据定义,1号结点的重要程度计算为1/2+1/2=1。由于图的对称性,其他三个结点的重要程度也都是1。

【评分方法】

本题没有部分分,仅当你的程序计算得出的各个结点的重要程度与标准输出相差不超过0.001时,才能得到测试点的满分,否则不得分。

【数据规模和约定】

50%的数据中:n ≤10,m ≤45

100%的数据中:n ≤100,m ≤4 500,任意一条边的权值c是正整数,满足:1 ≤c ≤1 000。

所有数据中保证给出的无向图连通,且任意两个结点之间的最短路径数目不超过10^10。

题解:

求最短路条数的经典问题,我们可以根据乘法原理在Floyd的过程中顺便求出。

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int n,m,a,b;
double ans[1001],f[105][105],s[105][105],c;
int main()
{
    freopen("network1.in","r",stdin);
    freopen("network1.out","w",stdout);
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;i++)
      for (int j=1;j<=n;j++)
        f[i][j]=999999999;
    for (int i=1;i<=m;i++)
      {
         scanf("%d%d%lf",&a,&b,&c);
         f[a][b]=c;f[b][a]=c;
         s[a][b]=s[b][a]=1;
      }
    for (int k=1;k<=n;k++)
      for (int i=1;i<=n;i++)
        for (int j=1;j<=n;j++)
              if (i!=j&&k!=j&&i!=k)
                {
                   if (f[i][j]>f[i][k]+f[k][j]) s[i][j]=0;
                   f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
                   if (f[i][k]+f[k][j]==f[i][j])s[i][j]+=s[i][k]*s[k][j];
                }
     for (int k=1;k<=n;k++)
       for (int i=1;i<=n;i++)
         for (int j=1;j<=n;j++)
              if (i!=j&&j!=k&&i!=k&&f[i][j]==f[i][k]+f[k][j])
                    ans[k]+=s[i][k]*s[k][j]/s[i][j];
    for (int i=1;i<=n;i++)
      printf("%.3lf\n", ans[i]);
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-11-09 23:02:38

【noi2007】【社交网络】【最短路】的相关文章

BZOJ1491 NOI2007 社交网络 最短路

题意:求每个节点v的$\sum\limits_{s \ne v,t \ne v} {\frac{{{C_{s,t}}(v)}}{{{C_{s,t}}}}}$,其中${C_{s,t}}(v)$为从s到t经过v的最短路的数量,${C_{s,t}}$为s到t的最短路的总数 题解:跑一边Floyd然后枚举判断即可 #include <cstdio> #include <climits> #include <cstring> #include <cstdlib> #i

BZOJ 1491: [NOI2007]社交网络( floyd )

floyd...求最短路时顺便求出路径数. 时间复杂度O(N^3) ------------------------------------------------------------------------------------------- #include<cstdio> #include<algorithm> #include<cstring> using namespace std; typedef long long ll; const int max

图论(floyd算法):NOI2007 社交网络

[NOI2007] 社交网络 ★★   输入文件:network1.in   输出文件:network1.out   简单对比 时间限制:1 s   内存限制:128 MB [问题描述] 在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有n个人,人与人之间有不同程度的关系.我 们将这个关系网络对应到一个n个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表

BZOJ1491:1491: [NOI2007]社交网络

1491: [NOI2007]社交网络 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2204  Solved: 1175[Submit][Status][Discuss] Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子里有n个人,人与人之间有不同程度的关系.我们将这个关系网络对应到一个n个结点的无向图上, 两个不同的人若互相认识,则在他们对应

1491: [NOI2007]社交网络

1491: [NOI2007]社交网络 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 881  Solved: 518[Submit][Status] Description Input Output 输出文件包括n 行,每行一个实数,精确到小数点后3 位.第i 行的实数表 示结点i 在社交网络中的重要程度. Sample Input 4 4 1 2 1 2 3 1 3 4 1 4 1 1 Sample Output 1.000 1.000 1.0

bzoj1491 [NOI2007]社交网络

Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有n个人,人与人之间有不同程度的关系.我们将这个关系网络对应到一个n个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两个人之间的关系越密切.我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路径上的其他结点为s和t的联系提供了某种便利,即这些结点对于

bzoj 1491: [NOI2007]社交网络

Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子里有n个人,人与人之间有不同程度的关系.我们将这个关系网络对应到一个n个结点的无向图上, 两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两个人 之间的关系越密切.我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路 径上的其他结点为s和t的联系提供了某种便利,即这些

【BZOJ 1491】 [NOI2007]社交网络

Description Input Output 输出文件包括n 行,每行一个实数,精确到小数点后3 位.第i 行的实数表 示结点i 在社交网络中的重要程度. Sample Input 4 4 1 2 1 2 3 1 3 4 1 4 1 1 Sample Output 1.000 1.000 1.000 1.000 HINT 为1 看到数据范围,显然Floyd map[i][j]表示i-->j的最短路,a[i][j]表示表示从i到j最短路的方案数,在改变最短路时该数组清零 1 #include<

1491: [NOI2007]社交网络 - BZOJ

Description Input Output输出文件包括n 行,每行一个实数,精确到小数点后3 位.第i 行的实数表 示结点i 在社交网络中的重要程度.Sample Input4 41 2 12 3 13 4 14 1 1Sample Output1.0001.0001.0001.000HINT 为1 其实floyd已经够了,我这sb没想到,TM想了半天想出一个拓扑排序的,还用了floyd预处理最短路,而且还下了数据和标程才突然想起来,我TM没拓扑排序for个屁啊(最后写出来pascal第一

[NOI2007]社交网络

题目:洛谷P2047.BZOJ1491.vijos P1591.codevs1796. 题目大意:给你一张带权无向图.令$C_{s,t}$表示从s到t的不同的最短路的数目,$C_{s,t}(v)$表示经过v从s到t的不同的最短路的数目.则定义: 为节点v的重要程度.问每个节点的重要程度(保留3位小数). 解题思路:用floyd求出每个节点的最短路时,可以顺便统计出两点见最短路的数量. 设$num_{i,j}$表示i到j的最短路的数量(即$C_{i,j}$),$dis_{i,j}$表示i到j的最短