深度理解高斯滤波器

1.高斯滤波器综述

高斯滤波器是一类根据高斯函数的形状来选择权值的线性平滑滤波器。高斯平滑滤波器对于抑制服从正态分布的噪声非常有效。一维零均值高斯函数为:

g(x)=exp( -x^2/(2 sigma^2)

其中,高斯分布参数Sigma决定了高斯函数的宽度。对于图像处理来说,常用二维零均值离散高斯函数作平滑滤波器。

高斯函数具有五个重要的性质,这些性质使得它在早期图像处理中特别有用.这些性质表明,高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用.高斯函数具有五个十分重要的性质,它们是:

(1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向.

(2)高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真.

(3)高斯函数的傅立叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染(噪声和细纹理).而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高斯函数付立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号.

(4)高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷.

(5)由于高斯函数的可分离性,较大尺寸的高斯滤波器可以得以有效地实现.二维高斯函数卷积可以分两步来进行,首先将图像与一维高斯函数进行卷积,然后将卷积结果与方向垂直的相同一维高斯函数卷积.因此,二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长.

2. 高斯函数在图像滤波中的应用

1 函数的基本概念

所谓径向基函数 (Radial Basis Function 简称 RBF), 就是某种沿径向对称的标量函数。通常定义为空间中任一点x到某一中心xc之间欧氏距离的单调函数
, 可记作 k(||x-xc||), 其作用往往是局部的 , 即当x远离xc时函数取值很小。最常用的径向基函数是高斯核函数 ,形式为 k(||x-xc||)=exp{- ||x-xc||^2/(2*σ)^2) } 其中xc为核函数中心,σ为函数的宽度参数 , 控制了函数的径向作用范围。

2 函数的表达式和图形

matlab绘图的代码:

alf=3;

n=7;%定义模板大小

n1=floor((n+1)/2);%确定中心

for i=1:n

a(i)= exp(-((i-n1).^2)/(2*alf^2));

for j=1:n

b(i,j) =exp(-((i-n1)^2+(j-n1)^2)/(4*alf))/(4*pi*alf);

end

end

subplot(121),plot(a),title(‘一维高斯函数‘
)

subplot(122),surf(b),title(‘二维高斯函数‘
)

3  图像滤波

1 图像滤波的基本概念

图像常常被强度随机信号(也称为噪声)所污染.一些常见的噪声有椒盐(Salt & Pepper)噪声、脉冲噪声、高斯噪声等.椒盐噪声含有随机出现的黑白强度值.而脉冲噪声则只含有随机的白强度值(正脉冲噪声)或黑强度值(负脉冲噪声).与前两者不同,高斯噪声含有强度服从高斯或正态分布的噪声.研究滤波就是为了消除噪声干扰。

图像滤波总体上讲包括空域滤波和频域滤波。频率滤波需要先进行傅立叶变换至频域处理然后再反变换回空间域还原图像,空域滤波是直接对图像的数据做空间变换达到滤波的目的。它是一种邻域运算,即输出图像中任何像素的值都是通过采用一定的算法,根据输入图像中对用像素周围一定邻域内像素的值得来的。如果输出像素是输入像素邻域像素的线性组合则称为线性滤波(例如最常见的均值滤波和高斯滤波),否则为非线性滤波(中值滤波、边缘保持滤波等)。

线性平滑滤波器去除高斯噪声的效果很好,且在大多数情况下,对其它类型的噪声也有很好的效果。线性滤波器使用连续窗函数内像素加权和来实现滤波。特别典型的是,同一模式的权重因子可以作用在每一个窗口内,也就意味着线性滤波器是空间不变的,这样就可以使用卷积模板来实现滤波。如果图像的不同部分使用不同的滤波权重因子,且仍然可以用滤波器完成加权运算,那么线性滤波器就是空间可变的。任何不是像素加权运算的滤波器都属于非线性滤波器.非线性滤波器也可以是空间不变的,也就是说,在图像的任何位置上可以进行相同的运算而不考虑图像位置或空间的变化。

2 图像滤波的计算过程分析

滤波通常是用卷积或者相关来描述,而线性滤波一般是通过卷积来描述的。他们非常类似,但是还是会有不同。下面我们来根据相关和卷积计算过程来体会一下他们的具体区别:

卷积的计算步骤:

(1)卷积核绕自己的核心元素顺时针旋转180度

(2)移动卷积核的中心元素,使它位于输入图像待处理像素的正上方

(3)在旋转后的卷积核中,将输入图像的像素值作为权重相乘

(4)第三步各结果的和做为该输入像素对应的输出像素

相关的计算步骤:

(1)移动相关核的中心元素,使它位于输入图像待处理像素的正上方

(2)将输入图像的像素值作为权重,乘以相关核

(3)将上面各步得到的结果相加做为输出

可以看出他们的主要区别在于计算卷积的时候,卷积核要先做旋转。而计算相关过程中不需要旋转相关核。

例如: magic(3) =[8 1 6;3 5 7;4 9 2],旋转180度后就成了[2 9 4;7 5 3;6
1 8]

4 高斯平滑滤波器的设计

高斯函数的最佳逼近由二项式展开的系数决定,换句话说,用杨辉三角形(也称Pascal三角形)的第n行作为高斯滤波器的一个具有n个点的一维逼近,例如,五点逼近为:

1 4 6 4 1

它们对应于Pascal三角形的第5行.这一模板被用来在水平方向上平滑图像.在高斯函数可分离性性质中曾指出,二维高斯滤波器能用两个一维高斯滤波器逐次卷积来实现,一个沿水平方向,一个沿垂直方向.实际中,这种运算可以通过使用单个一维高斯模板,对两次卷积之间的图像和最后卷积的结果图像进行转置来完成.

这一技术在模板尺寸N约为10时的滤波效果极好.对较大的滤波器,二项式展开系数对大多数计算机来说都太多.但是,任意大的高斯滤波器都能通过重复使用小高斯滤波器来实现.高斯滤波器的二项式逼近的σ可用高斯函数拟合二项式系数的最小方差来计算.

设计高斯滤波器的另一途径是直接从离散高斯分布中计算模板权值。为了计算方便,一般希望滤波器权值是整数。在模板的一个角点处取一个值,并选择一个K使该角点处值为1。通过这个系数可以使滤波器整数化,由于整数化后的模板权值之和不等于1,为了保证图像的均匀灰度区域不受影响,必须对滤波模板进行权值规范化。

高斯滤波器的采样值或者高斯滤波器的二项式展开系数可以形成离散高斯滤波器.当用离散高斯滤波器进行卷积时,其结果是一个更大的高斯离散滤波器.若一幅图像用N*N离散高斯滤波器进行平滑,接着再用M*M离散高斯滤波器平滑的话,那么平滑结果就和用(N+M-1)*(N+M-1)离散高斯滤波器平滑的结果一样.换言之,在杨辉三角形中用第N行和第M行卷积形成了第N+M-1行.

时间: 2024-10-01 07:02:26

深度理解高斯滤波器的相关文章

【信号、图像、Matlab】如何得到高斯滤波器的整数模板

[信号.图像.Matlab]如何得到高斯滤波器的整数模板 如何得到高斯滤波器的整数模板?这个问题困扰了我两天,上网搜索的代码,基本上都生成的小数,有的文档给写了3*3,5*5,7*7的整数形式,但是没有说是怎么得到的,应该说是我没有仔细看吧,现在恍然大悟,只要将左上角的元素化为1就可以了啊.我还以为用什么高级方法得出来的,晕死了. 二维高斯分布公式: 要得到高斯滤波器的整数模板就要从这个公式入手,这个公式在三维坐标下的形式是这样的: 我们要的高斯滤波器的整数模板相当于这个三维图形在底面(将底面网

对于linux下system()函数的深度理解(整理)

对于linux下system()函数的深度理解(整理) (2013-02-07 08:58:54) 这几天调程序(嵌入式linux),发现程序有时就莫名其妙的死掉,每次都定位在程序中不同的system()函数,直接在shell下输入system()函数中调用的命令也都一切正常.就没理这个bug,以为是其他的代码影响到这个,或是内核驱动文件系统什么的异常导致,昨天有出现了这个问题,就随手百了一下度,问题出现了,很多人都说system()函数要慎用要少用要能不用则不用,system()函数不稳定?

RRDtool深度理解

RRDtool深入学习 介绍 RRDtool:Round Robin Database Tool(轮询的数据库工具) 是一种存储数据的方式,使用固定大小的空间来存储数据,并有一个指针指向最新的数据的位置.我们可以把用于存储数据的数据库的空间看成一个圆,上面有很多刻度.这些刻度所在的位置就代表用于存储数据的地方.所谓指针,可以认为是从圆心指向这些刻度的一条直线.指针会随着数据的读写自动移动.要注意的是,这个圆没有起点和终点,所以指针可以一直移动,而不用担心到达终点后就无法前进的问题.在一段时间后,

Java深度理解——Java字节代码的操纵

导读:Java作为业界应用最为广泛的语言之一,深得众多软件厂商和开发者的推崇,更是被包括Oracle在内的众多JCP成员积极地推动发展.但是对于 Java语言的深度理解和运用,毕竟是很少会有人涉及的话题.InfoQ中文站特地邀请IBM高级工程师成富为大家撰写这个<Java深度历险>专栏,旨在就Java的一些深度和高级特性分享他的经验.在一般的Java应用开发过程中,开发人员使用Java的方式比较简单.打开惯用的IDE,编写Java源代码,再利用IDE提供的功能直接运行 Java 程序就可以了.

深度理解依赖注入

1.依赖在哪里   老马举了一个小例子,是开发一个电影列举器(MovieList),这个电影列举器需要使用一个电影查找器(MovieFinder)提供的服务,伪码如下: 1/*服务的接口*/ 2public interface MovieFinder { 3    ArrayList findAll(); 4} 5 6/*服务的消费者*/ 7class MovieLister 8{ 9    public Movie[] moviesDirectedBy(String arg) {10     

深度理解java虚拟机读书笔记(二)HotSpot Java对象创建,内存布局以及访问方式

内存中对象的创建.对象的结构以及访问方式. 一.对象的创建 在语言层面上,对象的创建只不过是一个new关键字而已,那么在虚拟机中又是一个怎样的过程呢? (一)判断类是否加载.虚拟机遇到一条new指令的时候,首先会检查这个指令的参数是否能在常量池中定位到一个类的符号引用,并且检查这个符号代表的类是否被加载.解析并初始化.如果没有完成这个过程,则必须执行相应类的加载. (二)在堆上为对象分配空间.对象需要的空间大小在类加载完成后便能确定.之后便是在堆上为该对象分配固定大小的空间.分配的方式也有两种:

深度理解Key-Value Observing 键值观察

前言   在上一阶段的开发过程中,我们大量使用了 KVO 机制,来确保页面信息的及时同步.也因此碰到了很多问题,促使我们去进一步学习 KVO 的相关机制,再到寻找更好的解决方案.鉴于 KVO 让人欲仙欲死的使用经历,在这里做一个简单分享.此分享的目的,更多的是在于点出 KVO 相关的技术点,供我们大家在学习和使用过程中做一个参考. 对于 KVO 的背后机制感兴趣的同学,可以直接看第三部分,KVC 和 isa-swizzling . 对于 替代方案感兴趣的同学,请直接跳到末尾的第五部分,有列出了目

贝叶斯来理解高斯混合模型GMM

最近学习基础算法<统计学习方法>,看到利用EM算法估计高斯混合模型(GMM)的时候,发现利用贝叶斯的来理解高斯混合模型的应用其实非常合适. 首先,假设我们对于贝叶斯比较熟悉,对高斯分布也熟悉.本文将GMM用于聚类来举例. 除了简单的高斯分布,理论上通过组合多个不同的高斯分布可以构成任意复杂的分布函数.如下图所示: 在最大似然,贝叶斯方法与朴素贝叶斯分类中,2.1中提到高斯概率密度用来计算连续变量情况下的朴素贝叶斯概率.该情况下的高斯分布是训练已知,然后对于输入变量求取其概率密度,结合类别的先验

深度理解Android InstantRun原理以及源码分析

深度理解Android InstantRun原理以及源码分析 @Author 莫川 Instant Run官方介绍 简单介绍一下Instant Run,它是Android Studio2.0以后新增的一个运行机制,能够显著减少你第二次及以后的构建和部署时间.简单通俗的解释就是,当你在Android Studio中改了你的代码,Instant Run可以很快的让你看到你修改的效果.而在没有Instant Run之前,你的一个小小的修改,都肯能需要几十秒甚至更长的等待才能看到修改后的效果. 传统的代