[聚类算法] K-means 算法

聚类 和 k-means简单概括。

  • 聚类是一种 无监督学习 问题,它的目标就是基于 相似度 将相似的子集聚合在一起。
  • k-means算法是聚类分析中使用最广泛的算法之一。它把n个对象根据它们的属性分为k个聚类,以便使得所获得的聚类满足:

同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。

k - means的算法原理:

时间: 2024-12-20 05:21:33

[聚类算法] K-means 算法的相关文章

聚类算法:K-means 算法(k均值算法)

k-means算法:      第一步:选$K$个初始聚类中心,$z_1(1),z_2(1),\cdots,z_k(1)$,其中括号内的序号为寻找聚类中心的迭代运算的次序号. 聚类中心的向量值可任意设定,例如可选开始的$K$个模式样本的向量值作为初始聚类中心.      第二步:逐个将需分类的模式样本$\{x\}$按最小距离准则分配给$K$个聚类中心中的某一个$z_j(1)$.假设$i=j$时, \[D_j (k) = \min \{ \left\| {x - z_i (k)} \right\|

机器学习(四) 机器学习(四) 分类算法--K近邻算法 KNN (下)

六.网格搜索与 K 邻近算法中更多的超参数 七.数据归一化 Feature Scaling 解决方案:将所有的数据映射到同一尺度 八.scikit-learn 中的 Scaler preprocessing.py import numpy as np class StandardScaler: def __init__(self): self.mean_ = None self.scale_ = None def fit(self, X): """根据训练数据集X获得数据的均

分类算法——k最近邻算法(Python实现)(文末附工程源代码)

kNN算法原理 k最近邻(k-Nearest Neighbor)算法是比较简单的机器学习算法.它采用测量不同特征值之间的距离方法进行分类,思想很简单:如果一个样本在特征空间中的k个最近邻(最相似)的样本中大多数属于某一个类别,则该样本也属于这个类别. kNN算法的步骤 第一阶段:确定k值(指最近的邻居的个数),一般是一个奇数 第二阶段:确定距离度量公式.文本分类一般使用夹角余弦,得出待分类数据点和所有已知类别的样本点,从中选择距离最近的k个样本: 第三阶段:统计这k个样本点钟各个类别的数量 kN

软件——机器学习与Python,聚类,K——means

K-means是一种聚类算法: 这里运用k-means进行31个城市的分类 城市的数据保存在city.txt文件中,内容如下: BJ,2959.19,730.79,749.41,513.34,467.87,1141.82,478.42,457.64TianJin,2459.77,495.47,697.33,302.87,284.19,735.97,570.84,305.08HeBei,1495.63,515.90,362.37,285.32,272.95,540.58,364.91,188.63

最基础的分类算法-k近邻算法 kNN简介及Jupyter基础实现及Python实现

k-Nearest Neighbors简介 对于该图来说,x轴对应的是肿瘤的大小,y轴对应的是时间,蓝色样本表示恶性肿瘤,红色样本表示良性肿瘤,我们先假设k=3,这个k先不考虑怎么得到,先假设这个k是通过程序员经验得到. 假设此时来了一个新的样本绿色,我们需要预测该样本的数据是良性还是恶性肿瘤.我们从训练样本中选择k=3个离新绿色样本最近的样本,以选取的样本点自己的结果进行投票,如图投票结果为蓝色:红色=3:0,所以预测绿色样本可能也是恶性肿瘤. 再比如 此时来了一个新样本,我们选取离该样本最近

02-16 k近邻算法

[TOC] 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ k近邻算法 k近邻算法(k-nearest neighbors,KNN)是一种基本的分类和回归方法,本文只探讨分类问题中的k近邻算法,回归问题通常是得出最近的$k$个实例的标记值,然后取这$k$实例标记值的平均数或中位数. k近邻算法经常被人们应用于生活当中,比如傅玄曾说过"近朱者赤近墨者黑&quo

K-means算法

K-means算法很简单,它属于无监督学习算法中的聚类算法中的一种方法吧,利用欧式距离进行聚合啦. 解决的问题如图所示哈:有一堆没有标签的训练样本,并且它们可以潜在地分为K类,我们怎么把它们划分呢?     那我们就用K-means算法进行划分吧. 算法很简单,这么做就可以啦: 第一步:随机初始化每种类别的中心点,u1,u2,u3,--,uk; 第二步:重复以下过程: 然后 ,就没有然后了,就这样子. 太简单, 不解释.

R语言最优聚类数目k改进kmean聚类算法

原文链接:http://tecdat.cn/?p=7237 在本文中,我们将探讨应用聚类算法(例如k均值和期望最大化)来确定集群的最佳数量时所遇到的问题之一.从数据集本身来看,确定集群数量的最佳值的问题通常不是很清楚.在本文中,我们将介绍几种技术,可用于帮助确定给定数据集的最佳k值.  我们将在当前的R Studio环境中下载数据集: StudentKnowledgeData <-read_csv(“ YourdownloadFolderPath / StudentKnowledgeData.c

聚类算法:K均值、凝聚层次聚类和DBSCAN

聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不同类型,通常有以下几种: (1)层次的与划分的:如果允许簇具有子簇,则我们得到一个层次聚类.层次聚类是嵌套簇的集族,组织成一棵树.划分聚类简单地将数据对象划分成不重叠的子集(簇),使得每个数据对象恰在一个子集中. (2)互斥的.重叠的与模糊的:互斥的指每个对象都指派到单个簇.重叠的或是模糊聚类用来反

初识聚类算法:K均值、凝聚层次聚类和DBSCAN

原文地址http://blog.sina.com.cn/s/blog_62186b460101ard2.html 这里只是将比较重要的部分转一下 另外还有一篇关于层次聚类的 http://blog.csdn.net/jwh_bupt/article/details/7685809 聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不同类型,通常有以下