Keil编译过程及程序在Flash和SRAM的空间分配

1. keil编译介绍

  当使用keil进行单片机的开发时,运行一段程序后,在output输出框会看到如下图的结果。

图1 keil 的output框

  其中,Compiler编译器,使用的版本是 V5.06,程序会先经过编译、后链接linking生成可执行的代码,如果要下载单片机的Flash上,还需要转换成二进制(bin)或者十六进制(hex)的文件。具体过程如下:

图2 keil的编译过程

  值得注意的是,经过编译后,并不会给变量赋地址生(.o文件),只有经过链接器链接后变量才有地址,链接的作用可以看做是便于管理。经链接后代码分为Code、RO-data、RW-data、ZI-data四部分。接下来是老生常谈的问题,每个区都是干嘛的呢?

  • CODE:代码区,指程序中代码即函数体的大小,注意程序中未使用的函数也会算在CODE中,也即会占用FLASH空间,因此不用的函数最好删除掉,以免占用过多FLASH空间;
  • RO-DATA:RO就是只读的意思,程序中只读的变量(也就是带Const的)和已初始化的字符串等;
  • RW-DATA:特指已初始化的可读可写全局/静态变量;
  • ZI-DATA:未初始化的可读可写全局/静态变量,注意初始化为0也算做未初始化,用到的堆空间和栈空间也会被算入这里面;

  之前我一直在想的一个问题是我的局部变量存放在哪里,其实是这样的,局部变量只有在程序运行的过程中才会生成,当程序不运行,即将关闭单片机的电源后,是没有局部变量的。所以这就要涉及到程序的两种状态存储态和运行态。

图3 程序的存储态和运行态

存储态:向Flash中下载程序时,其实仅仅下载的是CODE+RO-data+RW-data的内容,意思就是说,在掉电情况下,Flash里面的内存仅包含CODE+RO-data+RW-data这三块。

运行态:当上电后,程序运行时,首先程序会从特定的地址进行启动,启动时会将RW-data的数据加载到SRAM中(启用文件中有一段代码是干这件事的,keil已经帮你做完了这件事),单片机的 RO区域不需要加载到 SRAM,内核直接从 FLASH 读取指令运行。那ZI-data的数据怎么办呢?对于初始值为0全局变量来说,因为要在Code区要调用该全局变量,所以肯定要对其进行描述,程序运行时就知道了,原来你是初始值为0的全局变量呀,然后就在SRAM区给你分配了一段固定区域的地址;对于局部变量来说, 会自动分配大小,不用我们管。不禁要问了,ZI-data啥用也没有呀,它其实是有统计作用的,并且SRAM中一段特定的区域是运行ZI-data数据,RW-DATA+ZI-DATA就是程序运行总共会占用SRAM的长度,生成局部变量的栈空间包含在ZI-data区的范围

图4 程序的组成

  计算机系统的应用程序运行过程很类似,不过计算机系统的程序在存储状态时位于硬盘,执行的时候甚至会把上述的 RO 区域(代码、只读数据)加载到内存,加快运行速度,还有虚拟内存管理单元(MMU)辅助加载数据,使得可以运行比物理内存还大的应用程序,因为单片中 没有MMU,所以无法支持 Linux 和 Windows 系统,这里我说的单片是指M系列的单片机,但是可以跑ucos或FreeRTOS系统。

2. Flash和Sram的理解

  存储器是计算机结构的重要组成部分,存储器是用来存储程序代码和数据的部件,有了存储器计算机才具有记忆功能。按照存储介质的特性,可以分“易失性存储器”和“非易失性存储器”两类,易失和非易失是指存储器断电后,里面存储的内容是否会丢失,另一边的速度而言呢,易失性存储器的速度要快于非易失性存储器。

 

2.1 易失性存储器

  按照RAM的物理存储机制,可以分为DRAM(Dynamic)和SRAM(Static)两类。首先,说一下目前所用的DRAM,其通讯时序是利用时钟进行同步通讯,所以起名为Synchronous DRAM,那么,后期为了进一步提高SDRAM的通讯速度,人们设计了DDR SDRAM存储器(Double Data Rate SDRAM),随后又发展出二、三、四代SDRAM,现在很多PC机上的内存条是DDRIII SDRAM存储器。另外,静态随机存储器SRAM的存储单元以锁存器来存储数据,结构比DRAM要复杂很多,所以生产相同容量的存储器,DRAM的成本要更低,且集成度更高。

2.2 非易失性存储器

  半导体类的非易失性存储器有ROM和FLASH,感觉现在ROM使用的比较少了,貌似很多都被flash代替了。之前学单片机的时候,用的外接EEPROM算是一种ROM,不作过多介绍。FLASH的容量一般比EEPROM大得多,且在擦除时,一般以多个字节为单位。如有的FLASH存储器以4096个字节为扇区,最小的擦除单位为一个扇区。根据存储单元电路的不同,FLASH存储器又分为NOR FLASH和NAND FLASH。

  NOR与NAND的共性是在数据写入前都需要有擦除操作,而擦除操作一般是以“扇区/块”为单位,而NOR与NAND特性的差别,主要是其内部“地址/数据线”是否分开导致的。

  • 由于NOR的地址线和数据线分开,它可以按“字节”读写数据,符合CPU的指令译码执行要求,所以假如NOR上存储了代码指令,CPU给NOR一个地址,NOR就能向CPU返回一个数据让CPU执行,中间不需要额外的处理操作。所以,在功能上可以认为NOR是一种断电后数据不丢失的RAM,但它的擦除单位与RAM有区别,且读写速度比RAM要慢得多。
  • 由于NAND的数据和地址线共用,只能按“块”来读写数据,假如NAND上存储了代码指令,CPU给NAND地址后,它无法直接返回该地址的数据,所以不符合指令译码要求。若代码存储在NAND上,可以把它先加载到RAM存储器上,再由CPU执行。

  目前,单片机SOC内部普遍使用的是SRAM和NorFlash。

  Flash,SRAM寄存器和输入输出端口被组织在同一个4GB的线性地址空间内,可访问的存储器空间被分成8个主要块,每个块为512MB。存储器本身不具有地址信息,它的地址是由芯片厂商或用户分配,给存储器分配地址的过程就称为存储器映射,如果给存储器再分配一个地址就叫存储器重映射。NRF52832的内存映射如下图所示,

  在nordic芯片中FLASH存储编译后下载的程序,SRAM是存储在程序运行中的临时创建数据(ARMv7,哈弗结构),故只要你不外扩存储器,写完的程序中只要在芯片上运行起来,所有数据也就会出现在这两个存储器中。Flsah或者Ram内部又会根据不同的功能把他们分为多个模块。

  在网上看到一张图,感觉很有意思。这张图是STM32程序下载到Flash上的存储结构。如果你知道了这些具体地址,及地址块的作用,就可以做BootLoader以便产品后期升级。

参考网址:https://www.cnblogs.com/amanlikethis/p/3719529.html

原文地址:https://www.cnblogs.com/39950436-myqq/p/11387179.html

时间: 2024-10-10 15:12:47

Keil编译过程及程序在Flash和SRAM的空间分配的相关文章

[转]keil编译链接过程以及ARMCC、ARMASM、FROMELF、ARMLINK、ARMAR的使用

1.keil5 MDK的编译工具 armar.exe armasm.exe armcc.exe armlink.exe fromelf.exe 以及动态链接库 armcompiler_libFNP.dll 2.各工具用法 >>>armar.exe 可以在windows下使用命令行切换到该程序所在文件夹(keil5\ARM\ARMCC\bin),执行armar.exe -h进行命令查看.若有gitbash的话直接在该文件夹下右键选择gitbash here,之后运行./armar.exe

Keil编译后的Code,RO,RW,ZI分别表示什么以及和芯片Flash、SRAM的对应关系

在使用keil开发STM32应用程序时,点击Build后在Build Output窗口中经常会有如下信息: <ignore_js_op> 以前一直好奇这几个参数和实际使用的STM32芯片中Flash和SRAM的对应关系,于是上网搜了一圈,做如下总结: 这些参数的单位是Byte 图中几个参数分别代表  Code:代码的大小 RO:常量所占空间 RW:程序中已经初始化的变量所占空间 ZI:未初始化的static变量和全局变量以及堆栈所占的空间 上述参数和芯片Flash以及SRAM的对应关系是  F

C程序编译过程浅析【转】

转自:http://blog.csdn.net/koudaidai/article/details/8092647 前几天看了<程序员的自我修养——链接.装载与库>中的第二章“编译和链接”,主要根据其中的内容简单总结一下C程序编译的过程吧. 我现在一般都是用gcc,所以自然以GCC编译hellworld为例,简单总结如下. hello.c源代码如下: ?[Copy to clipboard] C 1 2 3 4 5 6 [c] view plaincopy <span style=&qu

C语言程序编译过程

最近在编译DM8168的ARM端程序时经常出现未定义.重定义等报错,由于源码文件多,包含关系比较多,所以自己添加时容易乱.深深的体会到,好的代码风格是如此重要,之前也在看代码重构,以后应该更加注意代码的质量.经思考总结规律如下: 1.公用的数据结构等写为一个头文件,其他源文件包含此头文件.同时为了让不同源文件里的函数都可以使用,公用的函数可以放在此头文件中声明. 2.其他源文件里声明的变量,如果想在另一个文件里用,需要extern声明,这样可以避免各种全局变量的交互混杂. 理解的比较浅,希望高人

CUDA程序编译过程中产生警告的解决方法

有时候经常使用别人用Tabhost+其它的实现demo.单纯利用Tabhost该如何使用呢? 下面看例子: public class MainActivity extends TabActivity { public TabHost tabHost; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); // 获取对象 tabHost = getTabH

程序编译过程

编译程序(Compiler,compiling program)也称为编译器,是指把用高级程序设计语言书写的源程序,翻译成等价的机器语言格式目标程序的翻译程序.作为一个程序员,我们应该了解它的过程,才能 更好的工作和学习. 编译过程课分为下列几个过程 编译C程序涉及很多多步骤,第一步称之为预处理阶段,C预处理器在源代码编译之前对其进行一些文本性质的操作. 注释的删除 插入#include指令包含的文件内容,定义和替换#include指令定义的符号以及确定代码的部分是否应该根据一些条件编译指令进行

李洪强iOS开发之C语言程序编译过程

汇编语言 指令用特定的名字来标记,这就是汇编语言 人比较容易看懂汇编语言 汇编直接和程序一一对应的 有汇编器把程序翻译成机器码 把高级语言编译成计算机识别的语言 程序编译过程 命令行 UNIX 系统中自带了C语言的编译器,编译器的名字叫CC CC 的含义是C Compler Linux系统是一个开源的,它自带的C编译器叫GCC GCC 不仅可以编译C 还可以编译Python 和OC MAC OS 的编译器是苹果公司自己研发的 Clang 在用CC或者GCC 的命令的时候,本质是调用了clang

【嵌入式开发】gcc 学习笔记(一) - 编译C程序 及 编译过程

一. C程序编译过程 编译过程简单介绍 : C语言的源文件 编译成 可运行文件须要四个步骤, 预处理 (Preprocessing) 扩展宏, 编译 (compilation) 得到汇编语言, 汇编 (assembly) 得到机器码, 连接 (linking) 得到可运行文件; -- 查看每一个步骤的编译细节 : "-E" 相应 预处理, "-S" 相应 编译, "-c" 相应 汇编, "-O" 相应 连接; -- 每一个步骤

C程序编译过程浅析

前几天看了<程序员的自我修养——链接.装载与库>中的第二章“编译和链接”,主要根据其中的内容简单总结一下C程序编译的过程吧. 我现在一般都是用gcc,所以自然以GCC编译hellworld为例,简单总结如下. hello.c源代码如下: /* 何问起 hovertree.com */ int main() { printf(“Hello, world.\n”); return 0; } 通常我们使用gcc来生成可执行程序,命令为:gcc hello.c,默认生成可执行文件a.out 其实编译(