虚函数表详解

虚函数表
 
对C++ 了解的人都应该知道虚函数(Virtual Function)是通过一张虚函数表(Virtual Table)来实现的。简称为V-Table。在这个表中,主是要一个类的虚函数的地址表,这张表解决了继承、覆盖的问题,保证其容真实反应实际的函数。这样,在有虚函数的类的实例中这个表被分配在了这个实例的内存中,所以,当我们用父类的指针来操作一个子类的时候,这张虚函数表就显得由为重要了,它就像一个地图一样,指明了实际所应该调用的函数。
 
这里我们着重看一下这张虚函数表。C++的编译器应该是保证虚函数表的指针存在于对象实例中最前面的位置(这是为了保证取到虚函数表的有最高的性能——如果有多层继承或是多重继承的情况下)。 这意味着我们通过对象实例的地址得到这张虚函数表,然后就可以遍历其中函数指针,并调用相应的函数。
 
听我扯了那么多,我可以感觉出来你现在可能比以前更加晕头转向了。 没关系,下面就是实际的例子,相信聪明的你一看就明白了。
 
假设我们有这样的一个类:
 
class Base {
     public:
            virtual void f() { cout << "Base::f" << endl; }
            virtual void g() { cout << "Base::g" << endl; }
            virtual void h() { cout << "Base::h" << endl; }
 
};
 
按照上面的说法,我们可以通过Base的实例来得到虚函数表。 下面是实际例程:
 
          typedef void(*Fun)(void);
 
            Base b;
 
            Fun pFun = NULL;
 
            cout << "虚函数表地址:" << (int*)(&b) << endl;
            cout << "虚函数表 — 第一个函数地址:" << (int*)*(int*)(&b) << endl;
 
            // Invoke the first virtual function 
            pFun = (Fun)*((int*)*(int*)(&b));
            pFun();
 
实际运行经果如下:(Windows XP+VS2003,  Linux 2.6.22 + GCC 4.1.3)
 
虚函数表地址:0012FED4
虚函数表 — 第一个函数地址:0044F148
Base::f
 
 
通过这个示例,我们可以看到,我们可以通过强行把&b转成int *,取得虚函数表的地址,然后,再次取址就可以得到第一个虚函数的地址了,也就是Base::f(),这在上面的程序中得到了验证(把int* 强制转成了函数指针)。通过这个示例,我们就可以知道如果要调用Base::g()和Base::h(),其代码如下:
 
            (Fun)*((int*)*(int*)(&b)+0);  // Base::f()
            (Fun)*((int*)*(int*)(&b)+1);  // Base::g()
            (Fun)*((int*)*(int*)(&b)+2);  // Base::h()
 
这个时候你应该懂了吧。什么?还是有点晕。也是,这样的代码看着太乱了。没问题,让我画个图解释一下。如下所示:

                

注意:在上面这个图中,我在虚函数表的最后多加了一个结点,这是虚函数表的结束结点,就像字符串的结束符“/0”一样,其标志了虚函数表的结束。这个结束标志的值在不同的编译器下是不同的。在WinXP+VS2003下,这个值是NULL。而在Ubuntu 7.10 + Linux 2.6.22 + GCC 4.1.3下,这个值是如果1,表示还有下一个虚函数表,如果值是0,表示是最后一个虚函数表。
 
 
下面,我将分别说明“无覆盖”和“有覆盖”时的虚函数表的样子。没有覆盖父类的虚函数是毫无意义的。我之所以要讲述没有覆盖的情况,主要目的是为了给一个对比。在比较之下,我们可以更加清楚地知道其内部的具体实现。
 
一般继承(无虚函数覆盖)
 
下面,再让我们来看看继承时的虚函数表是什么样的。假设有如下所示的一个继承关系:

                
 
请注意,在这个继承关系中,子类没有重载任何父类的函数。那么,在派生类的实例中,其虚函数表如下所示:

对于实例:Derive d; 的虚函数表如下:

我们可以看到下面几点:
1)虚函数按照其声明顺序放于表中。
2)父类的虚函数在子类的虚函数前面。
 
我相信聪明的你一定可以参考前面的那个程序,来编写一段程序来验证。
 
 
 
一般继承(有虚函数覆盖)
 
覆盖父类的虚函数是很显然的事情,不然,虚函数就变得毫无意义。下面,我们来看一下,如果子类中有虚函数重载了父类的虚函数,会是一个什么样子?假设,我们有下面这样的一个继承关系。
 
             

为了让大家看到被继承过后的效果,在这个类的设计中,我只覆盖了父类的一个函数:f()。那么,对于派生类的实例,其虚函数表会是下面的一个样子:

我们从表中可以看到下面几点,
1)覆盖的f()函数被放到了虚表中原来父类虚函数的位置。
2)没有被覆盖的函数依旧。
 
这样,我们就可以看到对于下面这样的程序,
 
            Base *b = new Derive();
 
            b->f();
 
由b所指的内存中的虚函数表的f()的位置已经被Derive::f()函数地址所取代,于是在实际调用发生时,是Derive::f()被调用了。这就实现了多态

多重继承(无虚函数覆盖)

下面,再让我们来看看多重继承中的情况,假设有下面这样一个类的继承关系。注意:子类并没有覆盖父类的函数。

          
 
对于子类实例中的虚函数表,是下面这个样子:

    

我们可以看到:
1)  每个父类都有自己的虚表。
2)  子类的成员函数被放到了第一个父类的表中。(所谓的第一个父类是按照声明顺序来判断的)
 
这样做就是为了解决不同的父类类型的指针指向同一个子类实例,而能够调用到实际的函数。

多重继承(有虚函数覆盖)

下面我们再来看看,如果发生虚函数覆盖的情况。
 
下图中,我们在子类中覆盖了父类的f()函数。


 
下面是对于子类实例中的虚函数表的图:

    
 
我们可以看见,三个父类虚函数表中的f()的位置被替换成了子类的函数指针。这样,我们就可以任一静态类型的父类来指向子类,并调用子类的f()了。如:

            Derive d;
            Base1 *b1 = &d;
            Base2 *b2 = &d;
            Base3 *b3 = &d;
            b1->f(); //Derive::f()
            b2->f(); //Derive::f()
            b3->f(); //Derive::f()

            b1->g(); //Base1::g()
            b2->g(); //Base2::g()
            b3->g(); //Base3::g()

安全性

每次写C++的文章,总免不了要批判一下C++。这篇文章也不例外。通过上面的讲述,相信我们对虚函数表有一个比较细致的了解了。水可载舟,亦可覆舟。下面,让我们来看看我们可以用虚函数表来干点什么坏事吧。

一、通过父类型的指针访问子类自己的虚函数

我们知道,子类没有重载父类的虚函数是一件毫无意义的事情。因为多态也是要基于函数重载的。虽然在上面的图中我们可以看到Base1的虚表中有Derive的虚函数,但我们根本不可能使用下面的语句来调用子类的自有虚函数:
 
          Base1 *b1 = new Derive();
            b1->f1();  //编译出错
 
任何妄图使用父类指针想调用子类中的未覆盖父类的成员函数的行为都会被编译器视为非法,所以,这样的程序根本无法编译通过。但在运行时,我们可以通过指针的方式访问虚函数表来达到违反C++语义的行为。(关于这方面的尝试,通过阅读后面附录的代码,相信你可以做到这一点)

二、访问non-public的虚函数

另外,如果父类的虚函数是private或是protected的,但这些非public的虚函数同样会存在于虚函数表中,所以,我们同样可以使用访问虚函数表的方式来访问这些non-public的虚函数,这是很容易做到的。
 
如:

class Base {
    private:
            virtual void f() { cout << "Base::f" << endl; }

};

class Derive : public Base{

};

typedef void(*Fun)(void);

void main() {
    Derive d;
    Fun  pFun = (Fun)*((int*)*(int*)(&d)+0);
    pFun();
}

结束语
C++这门语言是一门Magic的语言,对于程序员来说,我们似乎永远摸不清楚这门语言背着我们在干了什么。需要熟悉这门语言,我们就必需要了解C++里面的那些东西,需要去了解C++中那些危险的东西。不然,这是一种搬起石头砸自己脚的编程语言。
 
附录一:VC中查看虚函数表
 
我们可以在VC的IDE环境中的Debug状态下展开类的实例就可以看到虚函数表了(并不是很完整的)

        

附录 二:例程
下面是一个关于多重继承的虚函数表访问的例程:

#include <iostream>
using namespace std;

class Base1 {
public:
            virtual void f() { cout << "Base1::f" << endl; }
            virtual void g() { cout << "Base1::g" << endl; }
            virtual void h() { cout << "Base1::h" << endl; }

};

class Base2 {
public:
            virtual void f() { cout << "Base2::f" << endl; }
            virtual void g() { cout << "Base2::g" << endl; }
            virtual void h() { cout << "Base2::h" << endl; }
};

class Base3 {
public:
            virtual void f() { cout << "Base3::f" << endl; }
            virtual void g() { cout << "Base3::g" << endl; }
            virtual void h() { cout << "Base3::h" << endl; }
};

class Derive : public Base1, public Base2, public Base3 {
public:
            virtual void f() { cout << "Derive::f" << endl; }
            virtual void g1() { cout << "Derive::g1" << endl; }
};

typedef void(*Fun)(void);

int main()
{
            Fun pFun = NULL;

            Derive d;
            int** pVtab = (int**)&d;

            //Base1‘s vtable
            //pFun = (Fun)*((int*)*(int*)((int*)&d+0)+0);
            pFun = (Fun)pVtab[0][0];
            pFun();

            //pFun = (Fun)*((int*)*(int*)((int*)&d+0)+1);
            pFun = (Fun)pVtab[0][1];
            pFun();

            //pFun = (Fun)*((int*)*(int*)((int*)&d+0)+2);
            pFun = (Fun)pVtab[0][2];
            pFun();

            //Derive‘s vtable
            //pFun = (Fun)*((int*)*(int*)((int*)&d+0)+3);
            pFun = (Fun)pVtab[0][3];
            pFun();

            //The tail of the vtable
            pFun = (Fun)pVtab[0][4];
            cout<<pFun<<endl;

            //Base2‘s vtable
            //pFun = (Fun)*((int*)*(int*)((int*)&d+1)+0);
            pFun = (Fun)pVtab[1][0];
            pFun();

            //pFun = (Fun)*((int*)*(int*)((int*)&d+1)+1);
            pFun = (Fun)pVtab[1][1];
            pFun();

            pFun = (Fun)pVtab[1][2];
            pFun(); 

            //The tail of the vtable
            pFun = (Fun)pVtab[1][3];
            cout<<pFun<<endl;

            //Base3‘s vtable
            //pFun = (Fun)*((int*)*(int*)((int*)&d+1)+0);
            pFun = (Fun)pVtab[2][0];
            pFun();

            //pFun = (Fun)*((int*)*(int*)((int*)&d+1)+1);
            pFun = (Fun)pVtab[2][1];
            pFun();

            pFun = (Fun)pVtab[2][2];
            pFun(); 

            //The tail of the vtable
            pFun = (Fun)pVtab[2][3];
            cout<<pFun<<endl;

            return 0;
}

原文:https://blog.csdn.net/haoel/article/details/1948051/

原文地址:https://www.cnblogs.com/xiangtingshen/p/10982316.html

时间: 2024-11-18 04:21:36

虚函数表详解的相关文章

C++多态篇3——虚函数表详解之多继承、虚函数表的打印

在上上一篇C++多态篇1一静态联编,动态联编.虚函数与虚函数表vtable中,我最后简单了剖析了一下虚函数表以及vptr. 而在上一篇文章C++多态篇2--虚函数表详解之从内存布局看函数重载,函数覆盖,函数隐藏中我详细介绍了虚函数的函数重载,函数覆盖以及函数隐藏的问题,其实在那一篇文章中,对单继承的虚函数已经做了十分详细的解答了,如果对前面有兴趣的人可以先看一下那篇文章. 在这一篇中,我会具体的分析一下在不同继承中(单继承,多继承)关于虚函数表在内存中的布局以及如何打印虚函数表.但是有关在虚继承

C++多态篇2——虚函数表详解之从内存布局看函数重载,函数覆盖,函数隐藏

上一篇C++多态篇1一静态联编,动态联编.虚函数与虚函数表vtable中,我在最后分析了虚函数与虚函数表的内存布局,在下一篇详细剖析虚函数及虚函数表的过程中,我发现有关函数重载,函数覆盖,函数重写和函数协变的知识也要理解清楚才能对虚函数表在内存中的布局,对派生类的对象模型以及对多态的实现有更深的理解. 所以这一篇我作为一篇过渡篇,也同时对我以前写过的一篇博文进行一个收尾.在C++继承详解之二--派生类成员函数详解(函数隐藏.构造函数与兼容覆盖规则)文章中,我对函数覆盖,重载,重写提了一下,但是没

C++学习 - 虚表,虚函数,虚函数表指针学习笔记

虚函数 虚函数就是用virtual来修饰的函数.虚函数是实现C++多态的基础. 虚表 每个类都会为自己类的虚函数创建一个表,来存放类内部的虚函数成员. 虚函数表指针 每个类在构造函数里面进行虚表和虚表指针的初始化. 下面看一段代码: // // main.cpp // VirtualTable // // Created by Alps on 15/4/14. // Copyright (c) 2015年 chen. All rights reserved. // #include <iostr

C++中的虚函数表

学习了虚基类,立马就会想到虚函数,虚基类有个虚基类表与之对应,才使其发挥了不一般的作用,当然虚函数也有一个不函数表,其原理如下所示: 1.如果虚函数在基类与派生类中出现,仅仅是名字相同,而形式参数不同,或者是返回类型不同,那么即使加上了virtual关键字,也是不会进行滞后联编的. 2.只有类的成员函数才能说明为虚函数,因为虚函数仅适合用与有继承关系的类对象,所以普通函数不能说明为虚函数. 3.静态成员函数不能是虚函数,因为静态成员函数的特点是不受限制于某个对象. 4.内联(inline)函数不

C++虚函数及虚函数表解析

一.背景知识(一些基本概念) 虚函数(Virtual Function):在基类中声明为 virtual 并在一个或多个派生类中被重新定义的成员函数.纯虚函数(Pure Virtual Function):基类中没有实现体的虚函数称为纯虚函数(有纯虚函数的基类称为虚基类).C++  “虚函数”的存在是为了实现面向对象中的“多态”,即父类类别的指针(或者引用)指向其子类的实例,然后通过父类的指针(或者引用)调用实际子类的成员函数.通过动态赋值,实现调用不同的子类的成员函数(动态绑定).正是因为这种

C++ 多态、虚函数机制以及虚函数表

1.非virtual函数,调用规则取决于对象的显式类型.例如 A* a  = new B(); a->display(); 调用的就是A类中定义的display().和对象本体是B无关系. 2.virtual函数,具体调用哪个版本,取决于虚函数表.例如 A* a = new B(); a->v_display(); 这个时候,对象a就需要查找自身的虚函数表,表中的v_display()是一个函数指针,可能指向不同类中的对应的v_display函数并调用对应版本的v_display.一般而言,如

C++ 关于类与对象在虚函数表上唯一性问题 浅析

[摘要] 很多教材上都有介绍到虚指针.虚函数与虚函数表,有的说类对象共享一个虚函数表,有的说,一个类对象拥有一个虚函数表:还有的说,无论用户声明了多少个类对象,但是,这个VTABLE虚函数表只有一个:也有的在说,每个具有虚函数的类的对象里面都有一个VPTR虚函数指针,这个指针指向VTABLE的首地址,每个类的对象都有这么一种指针.今天,我们就来解决这个问题,同一个类的不同对象,是不是拥有"相同"的虚函数表,这个相同是物理上的相同(内存地址)还是逻辑上的相同(数据结构).本文现详述如下!

虚函数表与虚表钩子

对C++ 了解的人都应该知道虚函数(Virtual Function)是通过一张虚函数表(Virtual Table)来实现的.简称为V-Table.在这个表中,主是要一个类的虚函数的地址表,这张表解决了继承.覆盖的问题,保证其容真实反应实际的函数.这样,在有虚函数的类的实例中这个表被分配在了这个实例的内存中,所以,当我们用父类的指针来操作一个子类的时候,这张虚函数表就显得由为重要了,它就像一个地图一样,指明了实际所应该调用的函数. 这里我们着重看一下这张虚函数表.C++的编译器应该是保证虚函数

C++ Primer 学习笔记_35_面向对象编程(6)--虚函数与多态(三):虚函数表指针(vptr)及虚基类表指针(bptr)、C++对象模型

C++ Primer 学习笔记_35_面向对象编程(6)--虚函数与多态(三):虚函数表指针(vptr)及虚基类表指针(bptr).C++对象模型 一.虚函数表指针(vptr)及虚基类表指针(bptr) C++在布局以及存取时间上主要的额外负担是由virtual引起的,包括: virtual function机制:用以支持一个有效率的"执行期绑定": virtual base class:用以实现多次在继承体系中的基类,有一个单一而被共享的实体. 1.虚函数表指针 C++中,有两种数据