SDUT 2498 数据结构实验之图论十一:AOE网上的关键路径

数据结构实验之图论十一:AOE网上的关键路径

Time Limit: 2000 ms Memory Limit: 65536 KiB

Problem Description

一个无环的有向图称为无环图(Directed Acyclic Graph),简称DAG图。
    AOE(Activity On Edge)网:顾名思义,用边表示活动的网,当然它也是DAG。与AOV不同,活动都表示在了边上,如下图所示:
                                     
    如上所示,共有11项活动(11条边),9个事件(9个顶点)。整个工程只有一个开始点和一个完成点。即只有一个入度为零的点(源点)和只有一个出度为零的点(汇点)。
    关键路径:是从开始点到完成点的最长路径的长度。路径的长度是边上活动耗费的时间。如上图所示,1 到2 到 5到7到9是关键路径(关键路径不止一条,请输出字典序最小的),权值的和为18。

Input

这里有多组数据,保证不超过10组,保证只有一个源点和汇点。输入一个顶点数n(2<=n<=10000),边数m(1<=m <=50000),接下来m行,输入起点sv,终点ev,权值w(1<=sv,ev<=n,sv != ev,1<=w <=20)。数据保证图连通。

Output

关键路径的权值和,并且从源点输出关键路径上的路径(如果有多条,请输出字典序最小的)。

Sample Input

9 11
1 2 6
1 3 4
1 4 5
2 5 1
3 5 1
4 6 2
5 7 9
5 8 7
6 8 4
8 9 4
7 9 2

Sample Output

18
1 2
2 5
5 7
7 9

提示:该题的知识点是AOE关键路径,而AOE关键路径的特点就是不管是从前往后找还是从后往前更新,结点的权值都是不变一条路径。

代码实现如下(g++):
#include<bits/stdc++.h>
#define N 500500

using namespace std;

struct node
{
    int va,vb,w;
} dian[N];

int path[N],dut[N],in[N],out[N],ans;

void AOE(int n,int m)//AOE关键路径就是找从前往后更新的各点权值和从后往前更新的各点权值一样的点的路径即为关键路径
{
    memset(path,0,sizeof(path));
    memset(dut,0,sizeof(dut));
    for(int j=2; j<=n; j++)
    {
        int temp=0;
        for(int i=1; i<=m; i++)
        {
            if((dut[dian[i].va]<dut[dian[i].vb]+dian[i].w)||(dut[dian[i].va]==dut[dian[i].vb]+dian[i].w&&dian[i].vb<path[dian[i].va]))//不断更新各结点的权值
            {
                dut[dian[i].va]=dut[dian[i].vb]+dian[i].w;//找到各结点权值最大的一条路
                path[dian[i].va]=dian[i].vb;//记录下从前边点到的后边点的路径
                temp=1;
            }
        }
        if(!temp)
            break;
    }
    printf("%d\n",dut[ans]);
    int k=ans;
    while(path[k]!=0)
    {
        printf("%d %d\n",k,path[k]);
        k=path[k];
    }
}

int main()
{
    int n,m,i,a,b,c;
    while(~scanf("%d %d",&n,&m))
    {
        memset(dian, 0, sizeof(dian));
        memset(in, 0, sizeof(in));
        memset(out, 0, sizeof(out));
        for(i=1; i<=m; i++)
        {
            scanf("%d %d %d",&a,&b,&c);
            dian[i].va=a;
            dian[i].vb=b;
            dian[i].w=c;
            in[a]++;
            out[b]++;
        }
        for(i=1; i<=n; i++)
        {
            if(out[i]==0)
            {
                ans=i;//记录最后一个点的位置
            }
        }
        AOE(n,m);
    }
    return 0;
}

/***************************************************
Result: Accepted
Take time: 796ms
Take Memory: 1640KB
****************************************************/

原文地址:https://www.cnblogs.com/jkxsz2333/p/9508002.html

时间: 2024-10-08 20:23:10

SDUT 2498 数据结构实验之图论十一:AOE网上的关键路径的相关文章

SDUT 3361 数据结构实验之图论四:迷宫探索

数据结构实验之图论四:迷宫探索 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Discuss Problem Description 有一个地下迷宫,它的通道都是直的,而通道所有交叉点(包括通道的端点)上都有一盏灯和一个开关:请问如何从某个起点开始在迷宫中点亮所有的灯并回到起点? Input 连续T组数据输入,每组数据第一行给出三个正整数,分别表示地下迷宫的结点数N(1 < N <= 1000).边数M(M <= 30

SDUT 3362 数据结构实验之图论六:村村通公路

数据结构实验之图论六:村村通公路 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 当前农村公路建设正如火如荼的展开,某乡镇政府决定实现村村通公路,工程师现有各个村落之间的原始道路统计数据表,表中列出了各村之间可以建设公路的若干条道路的成本,你的任务是根据给出的数据表,求使得每个村都有公路连通所需要的最低成本. Input 连续多组数据输入,每组数据包括村落数目N(N <= 1000)和可供

SDUT 3363 数据结构实验之图论七:驴友计划

数据结构实验之图论七:驴友计划 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 做为一个资深驴友,小新有一张珍藏的自驾游线路图,图上详细的标注了全国各个城市之间的高速公路距离和公路收费情况,现在请你编写一个程序,找出一条出发地到目的地之间的最短路径,如果有多条路径最短,则输出过路费最少的一条路径. Input 连续T组数据输入,每组输入数据的第一行给出四个正整数N,M,s,d,其中N(2

SDUT 3364 数据结构实验之图论八:欧拉回路

数据结构实验之图论八:欧拉回路 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来. 能否走过这样的七座桥,并且每桥只走一次?瑞士数学家欧拉最终解决了这个问题并由此创立了拓扑学.欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡七桥问题,并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理.对于一个连通图,通常把

SDUT 2142 【TEST】数据结构实验之图论二:基于邻接表的广度优先搜索遍历

数据结构实验之图论二:基于邻接表的广度优先搜索遍历 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Discuss Problem Description 给定一个无向连通图,顶点编号从0到n-1,用广度优先搜索(BFS)遍历,输出从某个顶点出发的遍历序列.(同一个结点的同层邻接点,节点编号小的优先遍历) Input 输入第一行为整数n(0< n <100),表示数据的组数.对于每组数据,第一行是三个整数k,m,t(0<

数据结构实验之图论二:基于邻接表的广度优先搜索遍历

数据结构实验之图论二:基于邻接表的广度优先搜索遍历 Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 给定一个无向连通图,顶点编号从0到n-1,用广度优先搜索(BFS)遍历,输出从某个顶点出发的遍历序列.(同一个结点的同层邻接点,节点编号小的优先遍历) 输入 输入第一行为整数n(0< n <100),表示数据的组数. 对于每组数据,第一行是三个整数k,m,t(0<k<100,0<m<(k-1)*k/2,

SDUT-3361_数据结构实验之图论四:迷宫探索

数据结构实验之图论四:迷宫探索 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 有一个地下迷宫,它的通道都是直的,而通道所有交叉点(包括通道的端点)上都有一盏灯和一个开关:请问如何从某个起点开始在迷宫中点亮所有的灯并回到起点? Input 连续T组数据输入,每组数据第一行给出三个正整数,分别表示地下迷宫的结点数N(1 < N <= 1000).边数M(M <= 3000)和起始结点编号S,随后M行对应M条边,

SDUT 2498 AOE网上的关键路径

AOE网上的关键路径 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 一个无环的有向图称为无环图(Directed Acyclic Graph),简称DAG图.     AOE(Activity On Edge)网:顾名思义,用边表示活动的网,当然它也是DAG.与AOV不同,活动都表示在了边上,如下图所示:                                         如

SDUTOJ 2498 AOE网上的关键路径(最长路)

AOE网上的关键路径 Time Limit: 1000MS Memory limit: 65536K 题目描述 一个无环的有向图称为无环图(Directed Acyclic Graph),简称DAG图. AOE(Activity On Edge)网:顾名思义,用边表示活动的网,当然它也是DAG.与AOV不同,活动都表示在了边上,如下图所示: 如上所示,共有11项活动(11条边),9个事件(9个顶点).整个工程只有一个开始点和一个完成点.即只有一个入度为零的点(源点)和只有一个出度为零的点(汇点)