二进制、八进制和十六进制

二进制

用0、1两个数字来表示数值,这就是二进制(Binary)。对于二进制,进行加法运算时逢二进一,进行减法运算时借一当二。

1) 二进制加法:1+0=1、1+1=10、11+10=101、111+111=1110


                  二进制加法示意图

2) 二进制减法:1-0=1、10-1=1、101-11=10、1100-111=101


                  二进制减法示意图

八进制

八进制有 0~7 共8个数字,基数为8,加法运算时逢八进一,减法运算时借一当八。

1) 八进制加法:3+4=7、5+6=13、75+42=137、2427+567=3216


                  八进制加法示意图

2) 八进制减法:6-4=2、52-27=23、307-141=146、7430-1451=5757


                  八进制减法示意图

十六进制

十六进制中,用A来表示10,B表示11,C表示12,D表示13,E表示14,F表示15,因此有 0~F 共16个数字,基数为16,加法运算时逢16进1,减法运算时借1当16。

1) 十六进制加法:6+7=D、18+BA=D2、595+792=D27、2F87+F8A=3F11


                  十六进制加法示意图

2) 十六进制减法:D-3=A、52-2F=23、E07-141=CC6、7CA0-1CB1=5FEF


                  十六进制减法示意图

二进制、八进制、十六进制转换为十进制

二进制、八进制和十六进制向十进制转换就是“按权相加”。所谓“权”,也即“位权”。

假设当前数字是 N 进制,那么:

  • 对于整数部分,从右往左看,第 i 位的位权等于Ni-1
  • 对于小数部分,恰好相反,要从左往右看,第 j 位的位权为N-j
八进制:
423.5176 = 4×82 + 2×81 + 3×80 + 5×8-1 + 1×8-2 + 7×8-3 + 6×8-4 = 275.65576171875(十进制)

二进制:
1010.1101 = 1×23 + 0×22 + 1×21 + 0×20 + 1×2-1 + 1×2-2 + 0×2-3 + 1×2-4 = 10.8125(十进制)

十六进制:
EA7 = 14×162 + 10×161 + 7×160 = 3751(十进制)

十进制转换为二进制、八进制、十六进制

1) 整数部分

十进制整数转换为 N 进制整数采用“除 N 取余,逆序排列”法。具体做法是:

  • 将 N 作为除数,用十进制整数除以 N,可以得到一个商和余数;
  • 保留余数,用商继续除以 N,又得到一个新的商和余数;
  • 仍然保留余数,用商继续除以 N,还会得到一个新的商和余数;
  • ……
  • 如此反复进行,每次都保留余数,用商接着除以 N,直到商为 0 时为止。

把先得到的余数作为 N 进制数的低位数字,后得到的余数作为 N 进制数的高位数字,依次排列起来,就得到了 N 进制数字。

下图演示了将十进制数字 36926 转换成八进制的过程:

从图中得知,十进制数字 36926 转换成八进制的结果为 110076。

下图演示了将十进制数字 42 转换成二进制的过程:

从图中得知,十进制数字 42 转换成二进制的结果为 101010。

2) 小数部分

十进制小数转换成 N 进制小数采用“乘 N 取整,顺序排列”法。具体做法是:

  • 用 N 乘以十进制小数,可以得到一个积,这个积包含了整数部分和小数部分;
  • 将积的整数部分取出,再用 N 乘以余下的小数部分,又得到一个新的积;
  • 再将积的整数部分取出,继续用 N 乘以余下的小数部分;
  • ……
  • 如此反复进行,每次都取出整数部分,用 N 接着乘以小数部分,直到积中的小数部分为 0,或者达到所要求的精度为止。

把取出的整数部分按顺序排列起来,先取出的整数作为 N 进制小数的高位数字,后取出的整数作为低位数字,这样就得到了 N 进制小数。

下图演示了将十进制小数 0.930908203125 转换成八进制小数的过程:

从图中得知,十进制小数 0.930908203125 转换成八进制小数的结果为 0.7345。

下图演示了将十进制小数 0.6875 转换成二进制小数的过程:

从图中得知,十进制小数 0.6875 转换成二进制小数的结果为 0.1011。

下表列出了前 17 个十进制整数与二进制、八进制、十六进制的对应关系:

十进制 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
二进制 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000
八进制 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20
十六进制 0 1 2 3 4 5 6 7 8 9 A B C D E F 10

二进制和八进制、十六进制的转换

其实,任何进制之间的转换都可以使用上面讲到的方法,只不过有时比较麻烦,所以一般针对不同的进制采取不同的方法。将二进制转换为八进制和十六进制时就有非常简洁的方法,反之亦然。

1) 二进制整数和八进制整数之间的转换

二进制整数转换为八进制整数时,每三位二进制数字转换为一位八进制数字,运算的顺序是从低位向高位依次进行,高位不足三位用零补齐。下图演示了如何将二进制整数 1110111100 转换为八进制:

从图中可以看出,二进制整数 1110111100 转换为八进制的结果为 1674。

八进制整数转换为二进制整数时,思路是相反的,每一位八进制数字转换为三位二进制数字,运算的顺序也是从低位向高位依次进行。下图演示了如何将八进制整数 2743 转换为二进制:

从图中可以看出,八进制整数 2743 转换为二进制的结果为 10111100011。

2) 二进制整数和十六进制整数之间的转换

二进制整数转换为十六进制整数时,每四位二进制数字转换为一位十六进制数字,运算的顺序是从低位向高位依次进行,高位不足四位用零补齐。下图演示了如何将二进制整数 10 1101 0101 1100 转换为十六进制:

从图中可以看出,二进制整数 10 1101 0101 1100 转换为十六进制的结果为 2D5C。

十六进制整数转换为二进制整数时,思路是相反的,每一位十六进制数字转换为四位二进制数字,运算的顺序也是从低位向高位依次进行。下图演示了如何将十六进制整数 A5D6 转换为二进制:

从图中可以看出,十六进制整数 A5D6 转换为二进制的结果为 1010 0101 1101 0110。

原文地址:https://www.cnblogs.com/fanviwa/p/9408370.html

时间: 2024-10-08 20:10:09

二进制、八进制和十六进制的相关文章

二进制,八进制,十进制,十六进制!!!!

一直以为进制转换离我很远,不会碰到这个问题,就算碰到了,百度一下就能解决,所以一直没关注过这个问题.直到有一天,碰到了一个进制转换问题,却不可以用百度...FUCK. 所以总结一下,二进制,八进制,十进制,十六进制如下: * 二进制全是0.1 * 八进制以0开头表示,0-7 * 十进制不能以0开头表示,0-9 * 十六进制以0x开头表示,0-9,A-F java中进制转换: A.十进制转换其他 十进制转成二进制  Integer.toBinaryString(int i) 十进制转成八进制  I

二进制 八进制 十进制 十六进制之间的转换

一. 十进制与二进制之间的转换 (1)十进制转换为二进制,分为整数部分和小数部分 ① 整数部分 方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数.下面举例: 例:将十进制的168转换为二进制 得出结果 将十进制的168转换为二进制,(10101000)2 分析:第一步:将168除以2,商84,余数为0.  第二步:将商84除以2,商42余数为0. 

二进制 八进制 十进制 十六进制

一. 十进制与二进制之间的转换 (1) 十进制转换为二进制,分为整数部分和小数部分 ① 整数部分 方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数.下面举例: 例:将十进制的168转换为二进制 得出结果 将十进制的168转换为二进制,(10101000)2 分析:第一步,将168除以2,商84,余数为0. 第二步,将商84除以2,商42余数为0. 

(转 枫伶忆)二进制 八进制 十进制 十六进制之间转换

什么是二进制? 二进制是计算技术中广泛采用的一种数制.二进制数据是用0和1两个数码来表示的数.它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现.当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的.计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0. 信息的存储单位 位(Bit) :度量数据的最小单位 字节(Byte):最常用的基本单位,一个字节有8位 b7  b6 b5 b4 b3 b2 b1

C#中二进制,八进制,十六进制到十进制的相互转换

1.十进制数字向二进制,八进制,十六进制字符串的转换,使用函数 Convert.ToString(int value, int toBase): 它可以把一个数字转换为不同进制数值的字符串格式,其中toBase参数为进制的格式,只能是2.8.10及16: 如Convert.ToString(25,2)执行的结果为”11001”,Convert.ToString(25,8)执行的结果为”31”,Convert.ToString(25,16)执行的结果为”19”. 2.把二进制,八进制,十六进制字符

十进制与二进制,八进制,十六进制的转换

(一)数制       计算机采用的是二进制,因为二进制具有运算简单,易实现且可靠,为逻辑设计提供了有利的途径,节省设备等优点,为了便于描述,又常用八.十六进制作为二进制的缩写.特点: (1)逢n进一,n是每种进位进数制表示一位数所需要的符号数目为基数. 二进制:逢二进一,借一当二 八进制:逢八进一,借一当八 十六进制:逢十六进一,借一当十六 (二)数制转换       不同进位计数制之间的转换原则:不同进位计数制之间的转换是根据两个有理数如相等,则两数的整数和分数部分一定分别一定相等的原则进行

十进制负数转换为二进制、八进制、十六进制的知识分享

这篇文章主要介绍了十进制负数转换为二进制.八进制.十六进制的知识分享,需要的朋友可以参考下 程序猿们或许对二进制都不陌生,二进制是计算技术中广泛采用的一种数制.二进制数据是用0和1两个数码来表示的数.但是很多人都会将二进制转换成整数,但是如何用二进制表示负数呢?有的人会说,在二进制前面加个负数符合.而计算机只能认识0 和 1,又怎么去加个额外的负数符号呢?于是我们就需要用0和1来表示负数.如果想要弄懂这个,我们需要先了解什么是二进制原码. 原码是什么 原码(true form)是一种计算机中对数

二进制,八进制,十进制与十六进制之间的相互转换

功能:完成二进制,八进制,十进制与十六进制之间的相互转换(以字符数组形式输入). 要点: 字符数组反序:strrev(char *str); 字符数组转换为十进制整数:atoi(char *str); map容器完成字符到数值的转换: 字符数组完成数值到字符的转换: 1位16进制数可转换为4位2进制数 1位8进制数可转换为3位2进制数 使用右移和与运算代替除法和取余 #include<cstdio> #include<cstring> #include<cstdlib>

将一个十进制转换为二进制,八进制,十六进制

package com.db2; /** * 将一个十进制转换为二进制,八进制,十六进制 * * @author denny * */ public class Demo2 { public static void main(String[] args) { toBin(6); toBin(-6); toOct(60); toOct(-60); toHex(60); toHex(-60); } // 转换2进制 public static void toBin(int num) { toTran

十进制、二进制、八进制、十六进制之间的转换[基础]

今天翻了一本计算机基础的书籍,其中十进制.二进制.八进制.十六进制之间的转换挺有意思的,也容易犯糊涂,特温故而知新. 十进制数制系统 十进制数制系统包括 10 个数字:0.1.2.3.4.5.6.7.8.9 基为:10        逢十进一,如3+7=10,20+80=100 二进制数制系统 计算机中使用二进制表示数据 二进制包括两个符号:0和1 二进制逢二进一:(1+1)2=(10)2 二进制的基为2 示例:1000101100101101 八进制数制系统 用于缩短二进制的数字长度 八进制基