SVM: 如何使用SVM

使用SVM包来求θ

我们使用已经编写好的软件包(这些软件包效率高,用得多,是经无数人证明已经很好的可以使用的软件包)来求θ,而不是自己去编写软件来求它们(就像我们现在很少编写软件来求x½).经常使用的是liblinear和libsvm

虽然不用我们自己来写optimize函数,但是需要我们确定的是要选择C(cost function里面bias与variance权衡的参数=1/λ),以及选择什么样的kernel函数。

一种选择是不使用kernel(也称为linear kernel),直接使用x: 这种情况是当我们的n很大(即维度很高,features很多)但是训练样本却很少的情况下,我们一般不希望画出很复杂的边界线(因为样本很少,画出很复杂的边界线就会过拟合),而是用线性的边界线。

一种选择是使用Gaussian kernel: 这种情况需要确定σ2(平衡bias还是variance)。这种情况是当x的维度不高,但是样本集很多的情况下。如上图中,n=2,但是m却很多,需要一个类似于圆的边界线。(即需要一个复杂的边界)

时间: 2024-10-29 19:05:33

SVM: 如何使用SVM的相关文章

[机器学习之SVM] 线性SVM还是非线性SVM?【转】

SVM的应用领域很广,分类.回归.密度估计.聚类等,但我觉得最成功的还是在分类这一块. 用于分类问题时,SVM可供选择的参数并不多,惩罚参数C,核函数及其参数选择.对于一个应用,是选择线性核,还是多项式核,还是高斯核?还是有一些规则的. 实际应用中,多数情况是特征维数非常高.如OCR中的汉字识别,提取8方向梯度直方图特征,归一化的字符被等分成8*8的网格,每个网格计算出长度为8的方向直方图,特征维数是8*8*8 = 512维.在这样的高维空间中,想把两个字符类分开,用线性SVM是轻而易举的事,当

SVM:利用SVM算法实现手写图片识别(数据集50000张图片)—Jason niu

import mnist_loader # Third-party libraries from sklearn import svm def svm_baseline(): training_data, validation_data, test_data = mnist_loader.load_data() # train clf = svm.SVC() clf.fit(training_data[0], training_data[1]) predictions = [int(a) for

汽车检测SIFT+BOW+SVM

整个执行过程如下:1)获取一个训练数据集. 2)创建BOW训练器并获得视觉词汇. 3)采用词汇训练SVM. 4)尝试对测试图像的图像金字塔采用滑动宽口进行检测. 5)对重叠的矩形使用非极大抑制. 6)输出结果. 该项目的结构如下: |-----car_detector|       |--detector.py| |--__init__.py| |--non_maximum.py| |--pyramid.py| |--sliding_window.py|-----car_sliding_wind

在opencv3中利用SVM进行图像目标检测和分类

采用鼠标事件,手动选择样本点,包括目标样本和背景样本.组成训练数据进行训练 1.主函数 #include "stdafx.h" #include "opencv2/opencv.hpp" using namespace cv; using namespace cv::ml; Mat img,image; Mat targetData, backData; bool flag = true; string wdname = "image"; voi

支持向量机SVM

SVM(Support Vector Machine)有监督的机器学习方法,可以做分类也可以做回归.有好几个模型,SVM基本,SVM对偶型,软间隔SVM,核方法,前两个有理论价值,后两个有实践价值.下图来自龙老师整理课件. 基本概念 线性SVM,线性可分的分类问题场景下的SVM.硬间隔. 线性不可分SVM,很难找到超平面进行分类场景下的SVM.软间隔. 非线性SVM,核函数(应用最广的一种技巧,核函数的选择十分重要). SVR(支持向量回归).可以做回归. SVC,用SVM进行分类. 一.硬间隔

支持向量机(SVM)算法的matlab的实现

支持向量机(SVM)的matlab的实现 支持向量机是一种分类算法之一,matlab中也有相应的函数来对其进行求解:下面贴一个小例子,这个例子来源于我们实际的项目. clc; clear; N=10; %下面的数据是我们实际项目中的训练样例(样例中有8个属性) correctData=[0,0.2,0.8,0,0,0,2,2]; errorData_ReversePharse=[1,0.8,0.2,1,0,0,2,2]; errorData_CountLoss=[0.2,0.4,0.6,0.2,

机器学习:SVM实践:Libsvm的使用

引言 ? ? 本文从应用的角度出发,使用Libsvm函数库解决SVM模型的分类与回归问题 ? ? 首先说明一下实验数据,实验数据是Libsvm自带的heart_sacle,是个mat文件 ? ? 加载数据集 ? ? 将mat文件导入MATLAB后会有270*13的实例矩阵变量heart_scale_inst和270*1的标签矩阵heart_scale_label ? ? ? ? ? ? 分类 ? ? 将数据集分为训练数据和测试数据 ? ? 首先我们将实验数据分为训练数据和测试数据 ? ? loa

Spark机器学习(5):SVM算法

1. SVM基本知识 SVM(Support Vector Machine)是一个类分类器,能够将不同类的样本在样本空间中进行分隔,分隔使用的面叫做分隔超平面. 比如对于二维样本,分布在二维平面上,此时超平面实际上是一条直线,直线上面是一类,下面是另一类.定义超平面为: f(x)=w0+wTx 可以想象出,这样的直线可以有很多条,到底哪一条是超平面呢?规定超平面应该是距离两类的最近距离之和最大,因为只有这样才是最优的分类. 假设超平面是w0+wTx=0,那么经过上面这一类距离超平面最近点的直线是

机器学习算法总结--SVM

简介 SVM是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,即支持向量机的学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解.或者简单的可以理解为就是在高维空间中寻找一个合理的超平面将数据点分隔开来,其中涉及到非线性数据到高维的映射以达到数据线性可分的目的. 训练数据线性可分时,通过硬间隔最大化,学习一个线性分类器,即线性可分支持向量机,又称为硬间隔支持向量机:训练数据近似线性可分时,通过软间隔最大化,也学习一个线性分类器,即线性支持向量机,也称为软间隔支持向量机