[POJ1157]LITTLE SHOP OF FLOWERS

试题描述

You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.

 
V A S E S


1


2


3


4


5


Bunches


1 (azaleas)

7 23 -5 -24 16

2 (begonias)

5 21 -4 10 23

3 (carnations)


-21

5 -4 -20 20

According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers. If more than one arrangement has the maximal sum value, any one of them will be acceptable. You have to produce exactly one arrangement.

输入

  • The first line contains two numbers: FV.
  • The following F lines: Each of these lines contains V integers, so that Aij is given as the jth number on the (i+1)st line of the input file.
  • 1 <= F <= 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.
  • F <= V <= 100 where V is the number of vases.
  • -50 <= Aij <= 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

输出

The first line will contain the sum of aesthetic values for your arrangement.

输入示例

3 5
7 23 -5 -24 16
5 21 -4 10 23
-21 5 -4 -20 20

输出示例

53

数据规模及约定

见“输入

题解

设 f(i, j) 表示前 i 朵画摆在前 j 个位置,且第 i 束花摆在第 j 个位置的方案数。转移的时候枚举上一束花摆在的位置 k,那么 f(i, j) = max{ f(i-1, k) + Ai,j },状态 O(F·V),转移 O(V),总时间复杂度为 O(F·V2).

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std;

const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
    if(Head == Tail) {
        int l = fread(buffer, 1, BufferSize, stdin);
        Tail = (Head = buffer) + l;
    }
    return *Head++;
}
int read() {
    int x = 0, f = 1; char c = Getchar();
    while(!isdigit(c)){ if(c == ‘-‘) f = -1; c = Getchar(); }
    while(isdigit(c)){ x = x * 10 + c - ‘0‘; c = Getchar(); }
    return x * f;
}

#define maxn 110
#define oo 2147483647
int n, m, A[maxn][maxn], f[maxn][maxn];

int main() {
	n = read(); m = read();
	for(int i = 1; i <= n; i++)
		for(int j = 1; j <= m; j++) A[i][j] = read();

	int ans = -oo;
	for(int j = 0; j <= m; j++) {
		f[1][j] = A[1][j];
		if(n == 1) ans = max(ans, f[1][j]);
	}
	for(int j = 2; j <= m; j++)
		for(int i = 2; i <= min(n, j); i++) {
			for(int k = 1; k < j; k++) f[i][j] = max(f[i][j], f[i-1][k] + A[i][j]);
			if(i == n) ans = max(ans, f[i][j]);
		}

	printf("%d\n", ans);

	return 0;
}
时间: 2024-11-12 09:13:36

[POJ1157]LITTLE SHOP OF FLOWERS的相关文章

【DP】POJ-1157 LITTLE SHOP OF FLOWERS

LITTLE SHOP OF FLOWERS Time Limit: 1000MS Memory Limit: 10000K Description You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in

POJ1157——LITTLE SHOP OF FLOWERS

LITTLE SHOP OF FLOWERS Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 18481   Accepted: 8512 Description You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different

POJ1157 LITTLE SHOP OF FLOWERS DP

题目 http://poj.org/problem?id=1157 题目大意 有f个花,k个瓶子,每一个花放每一个瓶子都有一个特定的美学值,问美学值最大是多少.注意,i号花不能出如今某大于i号花后面.问最大美学值是多少 解题思路 dp[i][j]表示将第i个花插入第k个瓶子的最大美学值. 状态转移方程为dp[i][j] = max(dp[i-1][(i-1)~(k-f+i-1)]) + value[i][j] 代码 #include <cstdio> const int maxn = 110;

sgu 104 Little Shop of Flowers

经典dp问题,花店橱窗布置,不再多说,上代码 #include <cstdio> #include <cstring> #include <iostream> #include <cstdlib> #include <algorithm> #define N 150 #define inf 0x7f7f7f7f using namespace std; int n, m; int val[N][N], f[N][N]; int fa[N][N];

POJ 题目1157 LITTLE SHOP OF FLOWERS(DP)

LITTLE SHOP OF FLOWERS Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19457   Accepted: 8966 Description You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different

POJ 1157 LITTLE SHOP OF FLOWERS (线性dp)

OJ题目:click here~~ 题目分析:f个束花,编号为1-- f.v个花瓶,编号为1 -- v.编号小的花束,所选花瓶的编号也必须比编号大的花束所选花瓶的编号小,即花i 选k, 花j选t ,如果i < j ,则定有k < t . 如果 i > j , 则定有 k > t . 每束花放在每个花瓶里有一个值.求f束花,能得到的最大值. 设dp[ i ][ j ] 为第 i 束花选择了第 j 个花瓶 , 则转移方程为 dp[ i ][ j ] =  max(dp[ i  - 1]

poj - 1157 - LITTLE SHOP OF FLOWERS(dp)

题意:F朵花(从左到右标号为1到F,1 <= F <= 100)放入V个花瓶(从左到右标号为1到V,F <= V <= 100),花 i 要放在花 j 的左边,如果i < j,每朵花放入每个花瓶有一个好看度(-50 <= Aij <= 50),求所有花放入花瓶后的最大好看度和. -->>设dp[i][j]表示将前j种花放入前i个花瓶的最大好看度和,则状态转移方程为: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j -

POJ 1157 - LITTLE SHOP OF FLOWERS

据说是经典dp问题? 对于每个a[i][j],表示第 i 种花放在第 j 个花瓶里时产生的美学价值(aesthetic value), 我们用dp[i][j]表示共 i 种花放到 j 个花瓶里,产生的最大美学价值(显然这需要i<=j). 那么我们的答案也很简单,就是dp[F][V]. 那么接下来就是状态转移方程, 因为每个dp[i][j]:共 i 种花放到 j 个花瓶里,都有两种情况: ①第 i 种花放到第 j 个花瓶里,那么显然,前面的 i - 1 种花,就只能放到 j - 1 个瓶里,可以表

【SGU】SGU每日练1&#183;Little shop of flowers【DP】

题目大意: 给你n*m的矩形(m >= n) 每个节点mp[i][j]有一个权值,从第一行走到最后一行,每一行只准选择一个数且对于i行,所选数的列数要严格大于i-1行选择的列数 问你最大权值是多少,并输出选择的n个列数 思路: DP方程非常好想:DP[i][j] = max(DP[i][j - 1], DP[i - 1][j - 1] + mp[i][j]); 找路径的话,可以每行可以从从i+1到m,也可以直接从i - 1开始找 也可以在DP里面做标记,状态转移的时候将此点记录! 但是不能想的太