tarjan求lca :并查集+dfs

//参考博客 https://www.cnblogs.com/jsawz/p/6723221.html#include<bits/stdc++.h>
using namespace std;
#define maxn 420000
struct Query{int to,nxt,lca;}q[maxn];
struct Edge{int to,nxt;}edge[maxn<<1];
int n,m,p,x,y,tot_e,tot_q,head_q[maxn],head_e[maxn];
int fa[maxn],vis[maxn];
void init(){
    memset(head_e,-1,sizeof head_e);
    memset(head_q,-1,sizeof head_q);
    memset(fa,-1,sizeof fa);
    tot_q=tot_q=0;
}
void addedge(int u,int v){
    edge[tot_e].to=v;edge[tot_e].nxt=head_e[u];head_e[u]=tot_e++;
}
void addquery(int u,int v){
    q[tot_q].to=v;q[tot_q].nxt=head_q[u];head_q[u]=tot_q++;
}
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int dfs(int u){
    fa[u]=u;vis[u]=1;
    for(int i=head_e[u];i!=-1;i=edge[i].nxt){
        int v=edge[i].to;
        if(vis[v])continue;
        dfs(v);fa[v]=u;
    }
    for(int i=head_q[u];i!=-1;i=q[i].nxt){
        int v=q[i].to;
        if(vis[v]) q[i].lca=q[i^1].lca=find(v);
    }
}
int main(){
    init();
    cin>>n>>m>>p;
    for(int i=1;i<n;i++){
        cin>>x>>y;
        addedge(x,y);
        addedge(y,x);
    }
    for(int i=0;i<m;i++){
        cin>>x>>y;
        addquery(x,y);
        addquery(y,x);
    }
    dfs(p);
    for(int i=0;i<m;i++)
        printf("%d ",q[i<<1].lca);
}

原文地址:https://www.cnblogs.com/zsben991126/p/10356599.html

时间: 2024-11-08 17:59:18

tarjan求lca :并查集+dfs的相关文章

Tarjan求LCA

LCA问题算是一类比较经典的树上的问题 做法比较多样 比如说暴力啊,倍增啊等等 今天在这里给大家讲一下tarjan算法! tarjan求LCA是一种稳定高速的算法 时间复杂度能做到预处理O(n + m),查询O(1) 它的主要思想是dfs和并查集 1.输入数据,找出根节点(或输入的)并将图存起来 2.输入需要查找的每一对点(两个点),也存起来(也存成图) 3.从根节点开始向它的每一个孩子节点进行深搜 4.同时开一个bool类型的数组记录此节点是否搜索过 5.搜索到p节点时先将p标记为已经搜索过了

tarjan求lca的神奇

题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每行包含两个正整数x.y,表示x结点和y结点之间有一条直接连接的边(数据保证可以构成树). 接下来M行每行包含两个正整数a.b,表示询问a结点和b结点的最近公共祖先. 输出格式: 输出包含M行,每行包含一个正整数,依次为每一个询问的结果. 输入输出样例 输入样例#1: 5 5 4 3 1 2 4 5

[算法整理]树上求LCA算法合集

1#树上倍增 以前写的博客:http://www.cnblogs.com/yyf0309/p/5972701.html 预处理时间复杂度O(nlog2n),查询O(log2n),也不算难写. 2#st表(RMQ) 首先对一棵树进行dfs,得到欧拉序列,记录下每个节点的第一次出现位置. (先序遍历这棵树,访问到的节点(无论是从深的一层返回还是父节点访问)就加入到序列中,序列长度为2 * n - 1) 根据欧拉序列神奇的特性,两个点第一次出现的位置之间,深度最小的一个点,是这两个点LCA(反正我是不

【最近公共祖先Tarjan】Tarjan求LCA练习

Tarjan求LCA 这是一篇非常好的讲解,靠这个文章搞懂的~ 1 void tarjan(int u) 2 { 3 vis[u]=1; 4 for(int i=0;i<edge[u].size();i++) 5 { 6 int v=edge[u][i]; 7 if(vis[v] == 0) 8 { 9 tarjan(v); 10 p[v]=u; 11 } 12 } 13 for(int i=0;i<qy[u].size();i++) 14 { 15 int v=qy[u][i].v,id=q

【CodeForces】827 D. Best Edge Weight 最小生成树+倍增LCA+并查集

[题意]给定n个点m条边的带边权无向连通图,对每条边求最大边权,满足其他边权不变的前提下图的任意最小生成树都经过它.n,m<=2*10^5,1<=wi<=10^9. [算法]最小生成树+倍增LCA+并查集 [题解]首先求出图的一个最小生成树,则所有边分成树边和非树边. 对于非树边(u,v),假设u和v在最小生成树上的路径的最大边权Max,那么一定满足w(u,v)<=Max /////////////////////////////////////// 原文地址:https://ww

BZOJ 3562: [SHOI2014]神奇化合物 并查集+dfs

点击打开链接 注意到20w条边,但是询问只有1w,所以有很多边是从头到尾不变的. 首先离线处理,将从未删除的边缩点,缩点后的图的点数不会超过2w,对于每一次add或者delete,直接dfs看是否能从a走到b,然后维护一个ans. 数据不强,不然这种复杂度起码要跑10s.. #include<stdio.h> #include<iostream> #include<algorithm> #include<cstring> using namespace st

Codeforces 455C Civilization(并查集+dfs)

题目链接:Codeforces 455C Civilization 题目大意:给定N,M和Q,N表示有N个城市,M条已经修好的路,修好的路是不能改变的,然后是Q次操作,操作分为两种,一种是查询城市x所在的联通集合中,最长的路为多长.二是连接两个联通集合,采用联通之后最长路最短的方案. 解题思路:因为一开时的图是不可以改变的,所以一开始用dfs处理出各个联通集合,并且记录住最大值,然后就是Q次操作,用并查集维护,注意因为联通的时候要采用最长路径最短的方案,所以s的转移方程变为s = max(s,

poj 1470 Closest Common Ancestors tarjan求lca和树的孩子兄弟表示

题意: 给一棵树和若干查询点对,求这些点对的lca. 分析: tarjan求lca的模板题,树还是用孩子兄弟表示法比较简洁. 代码: //poj 1470 //sepNINE #include <iostream> #include <vector> using namespace std; const int maxN=1024; int n,u,v,t,m,x,y;; int par[maxN],son[maxN],bro[maxN],f[maxN],cnt[maxN],vis

Network POJ - 3694(lca并查集+连通图求桥)

就是求出原先图中的桥的数量,在每一次询问时加入一条新边,求加入当前边后图中剩余的桥的数量 求出原先图中的桥的数量,然后减去新加入边的两端点之间的桥的数量,就是剩余桥的数量.. 用并查集把属于同一集合的放到一起(即两个点之间没有桥的) #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <queue> #include <algo

Hdu 5458 Stability (LCA + 并查集 + 树状数组 + 缩点)

题目链接: Hdu 5458 Stability 题目描述: 给出一个还有环和重边的图G,对图G有两种操作: 1 u v, 删除u与v之间的一天边 (保证这个边一定存在) 2 u v, 查询u到v的路径上有几条桥. 解题思路: 这个题目有很多次操作,包含查询和删边两类,首先想到的是连通分量加缩点.如果按照顺序来,删边时候求桥就是问题了.所以可以离线处理,然后一边记录答案一边加边缩点. 对于一个图,把连通分量缩成一个点后,这个图就成为了一棵树, 然后深度差就等于桥的数目.查询的时候对于(u, v)