大数据初学者必备的详细版学习路线图

了解到,很多小伙伴都想要学习大数据技术,但真的不知道该如何学习,从哪个方向开始,又如何一步一步将大数据技术归为自己技能的呢?

要学习大数据的小伙伴可以按照这个路线走,是2019新更新的一版,大家可以放心学习,共分为以下五个阶段的学习:

很多初学者,对大数据的概念都是模糊不清的,大数据是什么,能做什么,学的时候,该按照什么线路去学习,学完往哪方面发展,想深入了解,想学习的同学欢迎加入大数据学习qq群:199427210,有大量干货(零基础以及进阶的经典实战)分享给大家,并且有清华大学毕业的资深大数据讲师给大家免费授课,给大家分享目前国内最完整的大数据高端实战实用学习流程体系

阶段一:Java基础。

Java语言基础,此阶段是大数据刚入门阶段,主要是学习一些Java语言的概念、字符、流程控制等。

阶段二是Linux基础和Hadoop生态体系。

此阶段主要掌握Linux操作系统的灵活使用。掌握大数据核心技术之一——Hadoop生态体系。

阶段三是分布式计算。

主要掌握Scala语言的使用、各种数据结构、同时还要深度讲解spark的一系列核心概念比如结构、安装、运行、理论概念等。还有Storm实时开发,Storm主要用来处理实时计算的问题。

阶段四主要是实战项目案例。

这一时期应该将所有知识通汇贯通,通过实战快速培养动手能力,确保一定的工作能力。

阶段五是大数据分析相关的技术知识。

主要是讲解Data Analyze数据分析基础、数据可视化、sklearn中有三类朴素贝叶斯算法等等!

大数据时代,中国IT环境也将面临重新洗牌,不仅仅是企业,更是程序员们转型可遇而不可求的机遇。大数据作为互联网发展的主要方向,大数据人才也将是未来的高薪贵族。

大家在学习大数据技术的时候,一定不要忽视时间的概念,无限的延长自己的学习时间,就有可能错过良好的机遇,所以在保证自己学习质量的同时,也要尽量缩短掌握大数据技术的时间!

原文地址:https://www.cnblogs.com/luxiaohong1132912559/p/10704739.html

时间: 2024-10-08 19:12:11

大数据初学者必备的详细版学习路线图的相关文章

没有基础可以学习大数据吗?0基础怎么学习大数据?给初学者支几招

小白如何学习大数据技术?大数据怎么入门?怎么做大数据分析?数据科学需要学习那些技术?大数据的应用前景等等问题,已成为热门大数据领域热门问题,以下是对新手如何学习大数据技术问题的解答~ 大数据开发学习可以按照以下内容进行学习 第一阶段:JavaSE+MySql+Linux 学习内容:Java 语言入门 → OOP 编程 → Java 常用Api.集合 → IO/NIO → Java 实 用技术 → Mysql 数据库 → 阶段项目实战 → Linux 基础 → shell 编程 学习目标:学习ja

零基础如何学好大数据?必备需要学习知识

大数据是对海量数据进行存储.计算.统计.分析处理的一系列处理手段,处理的数据量通常是TB级,甚至是PB或EB级的数据,这是传统数据处理手段所无法完成的,其涉及的技术有分布式计算.高并发处理.高可用处理.集群.实时性计算等,汇集了当前IT领域热门流行的IT技术. 想要学好大数据需掌握以下技术: Java编程技术 Java编程技术是大数据学习的基础,Java是一种强类型语言,拥有极高的跨平台能力,可以编写桌面应用程序.Web应用程序.分布式系统和嵌入式系统应用程序等,是大数据工程师最喜欢的编程工具,

大数据开发过程中的5个学习通用步骤

大数据的开发过程,如图1-1所示. 图 1-1大数据开发通用步骤图 上图只是一个简化后的步骤和流程,实际开发中,有的步骤可能不需要,有的还需要增加步骤,有的流程可能更复杂,因具体情况而定. 下面以Google搜索引擎为例,来说明以上步骤. 如果你想要学好大数据最好加入一个好的学习环境,可以来这个Q群529867072 这样大家学习的话就比较方便,还能够共同交流和分享资料 大数据采集 Google的数据来源于互联网上的网页,它们由Google Spider(蜘蛛.爬虫.机器人)来抓取,抓取的原理也

大数据入门,到底要怎么学习大数据?

很多人都知道大数据很火,就业很好,薪资很高,想往大数据方向发展.但该学哪些技术,学习路线是什么样的呢? 其实就是想告诉你的大数据的三个发展方向,平台搭建/优化/运维/监控.大数据开发/设计/架构.数据分析/挖掘.请不要问我哪个好学,哪个钱多. 先说一下大数据的4V特征: 数据量大,TB->PB 数据类型繁多,结构化.非结构化文本.日志.视频.图片.地理位置等: 商业价值高,但是这种价值需要在海量数据之上,通过数据分析与机器学习更快速的挖掘出来: 处理时效性高,海量数据的处理需求不再局限在离线计算

大数据难学吗?如何学习大数据?(附学习路线)

因为大数据前景好,薪资高,很多人想通过参加学习大数据,然后进入大数据行业发展.但是因为大数据的门槛较高,对于学习人员有一定的要求,那么学习大数据需要什么基础知识呢?大家一起来了解下对于大数据学习者本身的学历水平的要求.目前大多数的机构,对于大数据学习者要求必须是大专学历以上,而且大专学历还要求是理工科相关专业的,如果是本科及本科以上的,则对专业要求适当的放宽.同时大数据分为两大方向:大数据开发和数据分析.这两大方向的对于基础知识的要求不同,数据分析偏向应用层面,对于编程要求不高,相较而言对于基础

大数据初学者的福利——Hadoop快速入门教程

1.Hadoop生态概况 Hadoop是一个由Apache基金会所开发的分布式系统集成架构,用户可以在不了解分布式底层细节情况下,开发分布式程序,充分利用集群的威力来进行高速运算与存储,具有可靠.高效.可伸缩的特点 Hadoop的核心是YARN,HDFS,Mapreduce,常用模块架构如下 2.HDFS 源自谷歌的GFS论文,发表于2013年10月,HDFS是GFS的克隆版,HDFS是Hadoop体系中数据存储管理的基础,它是一个高度容错的系统,能检测和应对硬件故障 HDFS简化了文件一致性模

Laxcus大数据管理系统单机集群版

Laxcus大数据管理系统是我们Laxcus大数据实验室历时5年,全体系全功能设计研发的大数据产品,目前的最新版本是2.1版本.从三年前的1.0版本开始,Laxcus大数据系统投入到多个大数据和云计算项目中使用.2.0版本的Laxcus大数据管理系统,已经从紧耦合架构转为松耦合架构,整合了最新的大数据和关系数据库的技术,实现了一站式数据处理,大幅度提高了并行处理能力,同时兼具易操作.易维护.运行稳定的特点,节点数和数据存储计算规模已经达到百万台级和EB量级.目前已经覆盖的技术包括:行列混合存储.

Python与R的争锋:大数据初学者该怎样选?

作者:个推大数据工程师李树桓在当下,人工智能的浪潮席卷而来.从AlphaGo.无人驾驶技术.人脸识别.语音对话,到商城推荐系统,金融业的风控,量化运营.用户洞察.企业征信.智能投顾等,人工智能的应用广泛渗透到各行各业,也让数据科学家们供不应求.Python和R作为机器学习的主流语言,受到了越来越多的关注.数据学习领域的新兵们经常不清楚如何在二者之间做出抉择,本文就语言特性与使用场景为大家对比剖析. 一.Python和R的概念与特性 Python是一种面向对象.解释型免费开源高级语言.它功能强大,

一起来学大数据——走进Linux之门,学习大数据的重中之重

昨天我们看了有关大数据Hadoop的一些知识点,但是要在学习大数据之前,我们还是要为大数据的环境做一些的部署. 那么,今天我们就来讲讲开启我们大数据之路的Linux,跟上我们的脚步yo~ Linux介绍 Linux是我们当前各大系统中一种自由和开源的OS,虽然市面上有各种各样的版本,但是他们拥有同一个内核.我们在这个内核上面,自己添加一些程序后,就是我们之后称之的开发版本. 其中包括了两大阵营,它们分别是:Redhat系列和Debian系列.我们看到的红帽,centos就是第一个阵营的,而ubu