道路相遇 圆方树

道路相遇

基础圆方树。

不会圆方树看我另一篇文章

LG传送门

发现必经之路上的点一定是简单路径上的点,可以自己手玩。处理无向图上的简单路径,考虑把圆方树建出来,发现答案就是园方树上两点间圆点个数。由于广义园方树上圆方点相间,可以用深度表示答案,发现答案就是\((dep[u] + dep[v] - 2 * dep[lca]) / 2 + 1\)。

#include <cstdio>
#include <cctype>
#include <vector>
#define R register
#define I inline
#define B 10000000
using namespace std;
const int N = 1000003;
char buf[B], *p1, *p2;
I char gc() { return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, B, stdin), p1 == p2) ? EOF : *p1++; }
I int rd() {
    R int f = 0; R char c = gc();
    while (c < 48 || c > 57)
        c = gc();
    while (c > 47 && c < 58)
        f = f * 10 + (c ^ 48), c = gc();
    return f;
}
int s[N], S[N], vis[N], dfn[N], low[N], sta[N], fa[N], dep[N], siz[N], son[N], top[N], tim, cnt, stp;
vector <int> g[N], G[N];
I int min(int x, int y) { return x < y ? x : y; }
I void swap(int &x, int &y) { x ^= y, y ^= x, x ^= y; }
void dfs(int x) {
    vis[sta[++stp] = x] = 1, dfn[x] = low[x] = ++tim;
    for (R int i = 0, y ,z; i < s[x]; ++i)
        if (!dfn[y = g[x][i]]) {
            dfs(y), low[x] = min(low[x], low[y]);
            if (low[y] >= dfn[x]) {
                G[++cnt].push_back(x), G[x].push_back(cnt);
                do {
                    vis[z = sta[stp--]] = 0, G[cnt].push_back(z), G[z].push_back(cnt);
                } while (z ^ y);
            }
        }
        else
            low[x] = min(low[x], dfn[y]);
}
void dfs1(int x, int f) {
    fa[x] = f, dep[x] = dep[f] + 1, siz[x] = 1;
    for (R int i = 0, y, m = 0; i < S[x]; ++i)
        if ((y = G[x][i]) ^ f) {
            dfs1(y, x), siz[x] += siz[y];
            if (siz[y] > m)
                m = siz[y], son[x] = y;
        }
}
void dfs2(int x, int r) {
    top[x] = r;
    if (son[x])
        dfs2(son[x], r);
    for (R int i = 0, y; i < S[x]; ++i)
        if ((y = G[x][i]) ^ fa[x] && y ^ son[x])
            dfs2(y, y);
}
I int query(int x, int y) {
    R int  o = dep[x] + dep[y];
    while (top[x] ^ top[y]) {
        if (dep[top[x]] < dep[top[y]])
            swap(x, y);
        x = fa[top[x]];
    }
    if (dep[x] > dep[y])
        swap(x, y);
    return ((o - (dep[x] << 1)) >> 1) + 1;
}
int main() {
    R int n = rd(), m = rd(), Q, i, x, y;
    for (i = 1; i <= m; ++i)
        x = rd(), y = rd(), g[x].push_back(y), g[y].push_back(x);
    for (i = 1; i <= n; ++i)
        s[i] = g[i].size();
    Q = rd(), cnt = n, dfs(1);
    for (i = 1; i <= cnt; ++i)
        S[i] = G[i].size();
    dfs1(1, 0), dfs2(1, 1);
    for (i = 1; i <= Q; ++i)
        x = rd(), y = rd(), printf("%d\n", query(x, y));
    return 0;
}

原文地址:https://www.cnblogs.com/cj-chd/p/10293730.html

时间: 2024-07-31 04:25:44

道路相遇 圆方树的相关文章

【P4320】 道路相遇 (圆方树+LCA)

题目链接 题意:给一张无向图和\(M\)个询问,问\(u,v\)之间的路径的必经之点的个数. 对图建出圆方树,然后必经之点就是两点路径经过的原点个数,用\((dep[u]+dep[v]-dep[LCA]*2)/2+1\)即可算出. 什么你不知道圆方树(说的跟我知道一样) \(APIO2018\)出来的黑科技,详见\(APIO2018\)铁人两项. 就是对每个点双新建一个点,然后让点双里所有点都对这个点连边. 看图. #include <cstdio> const int MAXN = 5000

[SDOI2018]战略游戏 圆方树,树链剖分

[SDOI2018]战略游戏 这题是道路相遇(题解)的升级版,询问的两个点变成了\(S\)个点. LG传送门 还是先建出圆方树,考虑对于询问的\(S\)个点,答案就是圆方树上能包含这些点的最小连通块中的圆点个数减去\(S\).问题变成了怎样求这样的连通块中的圆点个数,直接给结论吧:先搞出树的dfs序,把询问的点按dfs序从小到大排一遍序,每次把答案加上第\(i\)和第\(i + 1\)个点之间的圆点个数,但是不算lca,再加上第\(1\)个和第\(S\)个点之间的圆点个数,然后除以二就得到了这个

[圆方树] Luogu P4630 Duathlon 铁人两项

题目描述 比特镇的路网由 mm 条双向道路连接的 nn 个交叉路口组成. 最近,比特镇获得了一场铁人两项锦标赛的主办权.这场比赛共有两段赛程:选手先完成一段长跑赛程,然后骑自行车完成第二段赛程. 比赛的路线要按照如下方法规划: 先选择三个两两互不相同的路口 s, cs,c和 ff,分别作为比赛的起点.切换点(运动员在长跑到达这个点后,骑自行车前往终点).终点. 选择一条从 ss出发,经过 cc最终到达 ff的路径.考虑到安全因素,选择的路径经过同一个点至多一次. 在规划路径之前,镇长想请你帮忙计

圆方树学习

圆方树是一种数据结构. 这个东西原始的出处应该是paper <Maintaining bridge-connected and biconnected components on-line> tarjan和另外一个人写的...当时叫forest data structure 然后这个东西似乎已经流行很久了?http://blog.csdn.net/PoPoQQQ/article/details/49513819 cjk大爷最近发了一篇博客写这个:http://immortalco.blog.u

【BZOJ】2125: 最短路 圆方树(静态仙人掌)

[题意]给定带边权仙人掌图,Q次询问两点间最短距离.n,m,Q<=10000 [算法]圆方树处理仙人掌问题 [题解]树上的两点间最短路问题,常用倍增求LCA解决,考虑扩展到仙人掌图. 先对仙人掌图建圆方树,圆圆边和原图边权一致.对于每个方点代表的环,记深度最小的点为x,则圆方边的边权是圆点到x的最短距离. 若lca(u,v)为圆点,则两点间最短路转化为圆方树上dis[u]+dis[v]-2*dis[lca].(向上延伸的路径,经过环则必然经过每个方点的x,计算无误) 若lca(u,v)为方点,则

CF487E Tourists 【圆方树 + 树剖 + 堆】

题目链接 CF487E 题解 圆方树 + 树剖 裸题 建好圆方树维护路径上最小值即可 方点的值为其儿子的最小值,这个用堆维护 为什么只维护儿子?因为这样修改点的时候就只需要修改其父亲的堆 这样充分利用了一对一的特性优化了复杂度 如此询问时如果\(lca\)为方点,再询问一下\(lca\)的父亲即可 复杂度\(O(qlog^2n)\) #include<algorithm> #include<iostream> #include<cstring> #include<

Tourists——圆方树

CF487E Tourists 一般图,带修求所有简单路径代价. 简单路径,不能经过同一个点两次,那么每个V-DCC出去就不能再回来了. 所以可以圆方树,然后方点维护一下V-DCC内的最小值. 那么,从任意一个割点进入这个DCC,必然可以绕一圈再从另一个割点出去. 所以,路径上的最小值,就是圆方树路径上的最小值.方点的最小值就是在这个DCC中走一走得到的. 树链剖分+线段树维护路径 用堆维护方点四周的圆点的最小值.然后更新. 一个问题是: 更新一个割点圆点,会影响到四周所有的方点.暴力更新,菊花

CF487E Tourists 圆方树、树链剖分

传送门 注意到我们需要求的是两点之间所有简单路径中最小值的最小值,那么对于一个点双联通分量来说,如果要经过它,则一定会经过这个点双联通分量里权值最小的点 注意:这里不能缩边双联通分量,样例\(2\)就是一个反例 上面这个图如果缩点双会缩成\(3\)个,但是缩边双会将整个图缩成\(1\)个点. 假如我们询问的是\((1,4)\)之间的简单路径,而图中权值最小的点为\(7\)号点,那么如果缩成了边双联通分量,你的答案会是\(7\)号点的权值,意即认为可以走到\(7\)号点,但实际上如果到\(7\)号

圆方树总结

圆方树:一种将由图转化而成的树,从而大大了增加题目的可解性,且大多广泛用于仙人掌图中. 针对仙人掌图上的圆方树:仙人掌是指一条边至多只被一个环包含的无向图. 树上的点:圆方树上分为两类点,一类是圆点,一类是方点.圆点即原图中所有的点,方点即为了去环而新添加进去的,满足一定性质的点. 构造思路:圆圆边直接加入,对于仙人掌中的任意一个环,每个环上的点在圆方树上对应的圆点向这个环对应的方点连边,方点为一个新建节点. 环的根:指定一个圆点为圆方树的根,把方点的父亲叫做这个方点对应的环的根. 圆方边边权: