Suppose that all the keys in a binary tree are distinct positive integers. Given the postorder and inorder traversal sequences, you are supposed to output the level order traversal sequence of the corresponding binary tree.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤), the total number of nodes in the binary tree. The second line gives the postorder sequence and the third line gives the inorder sequence. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding binary tree. All the numbers in a line must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:
7
2 3 1 5 7 6 4
1 2 3 4 5 6 7
Sample Output:
4 1 6 3 5 7 2
分析:根据后序遍历和中序遍历 输出层序遍历我的做法是利用后序遍历和中序遍历建树 再层序遍历输出利用两个变量来记录我们需要建子树的范围 另一个变量记录每层的根节点
1 #define _CRT_SECURE_NO_WARNINGS 2 #include<iostream> 3 #include<vector> 4 #include<queue> 5 #include<stack> 6 #include<algorithm> 7 using namespace std; 8 typedef struct BtNode* Bt; 9 struct BtNode 10 { 11 int Num; 12 Bt RT; 13 Bt LT; 14 }; 15 vector<vector<int> > Order(2); 16 Bt BuildTree(Bt T,int i2,int j2,int j1) 17 { 18 if (i2 >= j2) 19 return T; 20 int i = i2; 21 for (; i < j2; i++) 22 { 23 if (Order[1][i] == Order[0][j1 - 1]) 24 break; 25 } 26 if (!T) 27 { 28 T = new BtNode(); 29 T->LT = NULL; 30 T->RT = NULL; 31 T->Num = Order[1][i]; 32 } 33 T->LT =BuildTree(T->LT,i2,i,j1-j2+i); 34 T->RT = BuildTree(T->RT,i+1,j2,j1-1); 35 return T; 36 } 37 int main() 38 { 39 int N; 40 cin >> N; 41 int num; 42 for(int i=0;i<2;i++) 43 for (int j = 0; j < N; j++) 44 { 45 cin >> num; 46 Order[i].push_back(num); 47 } 48 Bt T=NULL; 49 T = BuildTree(T,0,N,N); 50 queue<Bt> Q; 51 Q.push(T); 52 cout << T->Num; 53 while (!Q.empty()) 54 { 55 if (Q.front()->LT) 56 { 57 Q.push(Q.front()->LT); 58 cout << " " << Q.front()->LT->Num; 59 } 60 if (Q.front()->RT) 61 { 62 Q.push(Q.front()->RT); 63 cout << " " << Q.front()->RT->Num; 64 } 65 Q.pop(); 66 } 67 return 0; 68 }
原文地址:https://www.cnblogs.com/57one/p/11929098.html