随机梯度下降法(Stochastic gradient descent, SGD)

BGD(Batch gradient descent)批量梯度下降法:每次迭代使用所有的样本(样本量小)    Mold 一直在更新

SGD(Stochastic gradientdescent)随机梯度下降法:每次迭代使用一组样本(样本量大)Mold 把一批数据过完才更新一次

针对BGD算法训练速度过慢的缺点,提出了SGD算法,普通的BGD算法是每次迭代把所有样本都过一遍,每训练一组样本就把梯度更新一次。而SGD算法是从样本中随机抽出一组,训练后按梯度更新一次,然后再抽取一组,再更新一次,在样本量及其大的情况下,可能不用训练完所有的样本就可以获得一个损失值在可接受范围之内的模型了。

原文地址:https://www.cnblogs.com/focusonoutput/p/12154024.html

时间: 2024-12-13 18:32:59

随机梯度下降法(Stochastic gradient descent, SGD)的相关文章

随机梯度下降 Stochastic gradient descent

梯度下降法先随机给出参数的一组值,然后更新参数,使每次更新后的结构都能够让损失函数变小,最终达到最小即可. 在梯度下降法中,目标函数其实可以看做是参数的函数,因为给出了样本输入和输出值后,目标函数就只剩下参数部分了,这时可以把参数看做是自变量,则目标函数变成参数的函数了. 梯度下降每次都是更新每个参数,且每个参数更新的形式是一样的,即用前一次该参数的值减掉学习率和目标函数对该参数的偏导数(如果只有1个参数的话,就是导数) 为什么要这样做呢? 通过取不同点处的参数可以看出,这样做恰好可以使原来的目

[NN] Stochastic Gradient Descent - SAG & SVRG

solver : {‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’}, default: ‘liblinear’ Algorithm to use in the optimization problem. For small datasets, ‘liblinear’ is a good choice, whereas ‘sag’ is faster for large ones. For multiclass problems, only ‘newton-cg

Hulu机器学习问题与解答系列 | 二十四:随机梯度下降法

Hulu优秀的作者们每天和公式抗争,只为提升你们的技能,感动的话就把文章看完,然后哭一个吧. 今天的内容是 [随机梯度下降法] 场景描述 深度学习得以在近几年迅速占领工业界和学术界的高地,重要原因之一是数据量的爆炸式增长.如下图所示,随着数据量的增长,传统机器学习算法的性能会进入平台期,而深度学习算法因其强大的表示能力,性能得以持续增长,甚至在一些任务上超越人类.因此有人戏称,"得数据者得天下". 经典的优化方法,例如梯度下降法,每次迭代更新需要用到所有的训练数据,这给求解大数据.大规

梯度下降法和随机梯度下降法的区别

这几天在看<统计学习方法>这本书,发现 梯度下降法 在 感知机 等机器学习算法中有很重要的应用,所以就特别查了些资料.  一.介绍       梯度下降法(gradient descent)是求解无约束最优化问题的一种常用方法,有实现简单的优点.梯度下降法是迭代算法,每一步需要求解目标函数的梯度向量.  二.应用场景      1.给定许多组数据(xi, yi),xi (向量)为输入,yi为输出.设计一个线性函数y=h(x)去拟合这些数据. 2.感知机:感知机(perceptron)为二类分类

FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MINI-BATCH LEARNING. WHAT IS THE DIFFERENCE?

FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MINI-BATCH LEARNING. WHAT IS THE DIFFERENCE? In order to explain the differences between alternative approaches to estimating the parameters of a model,

Gradient Descent 和 Stochastic Gradient Descent(随机梯度下降法)

Gradient Descent(Batch Gradient)也就是梯度下降法是一种常用的的寻找局域最小值的方法.其主要思想就是计算当前位置的梯度,取梯度反方向并结合合适步长使其向最小值移动.通过柯西施瓦兹公式可以证明梯度反方向是下降最快的方向. 经典的梯度下降法利用下式更新参量,其中J(θ)是关于参量θ的损失函数,梯度下降法通过不断更新θ来最小化损失函数.当损失函数只有一个global minimal时梯度下降法一定会收敛于最小值(在学习率不是很大的情况下) 上式的梯度是基于所有数据的,如果

随机梯度下降(stochastic gradient descent),批梯度下降(batch gradient descent),正规方程组(The normal equations)

对于一个线性回归问题有 为了使得预测值h更加接近实际值y,定义 J越小,预测更加可信,可以通过对梯度的迭代来逼近极值 批梯度下降(batch gradient descent)(the entire training set before taking a single step) 随机梯度下降(stochastic gradient descent)(gets θ "close" to the minimum much faster than batch gradient desce

用随机梯度下降法(SGD)做线性拟合

1.综述 scikit-learn的线性回归模型都是通过最小化成本函数来计算参数的,通过矩阵乘法和求逆运算来计算参数.当变量很多的时候计算量会非常大,因此我们改用梯度下降法,批量梯度下降法每次迭代都用所有样本,快速收敛但性能不高,随机梯度下降法每次用一个样本调整参数,逐渐逼近,效率高,本节我们来利用随机梯度下降法做拟合. 2.随机梯度下降法 梯度下降就好比从一个凹凸不平的山顶快速下到山脚下,每一步都会根据当前的坡度来找一个能最快下来的方向.随机梯度下降英文是Stochastic gradient

梯度下降(Gradient Descent)

在求解机器学习算法的优化问题时,梯度下降是经常采用的方法之一. 梯度下降不一定能够找到全局最优解,有可能是一个局部最优解.但如果损失函数是凸函数,梯度下降法得到的一定是全局最优解. 梯度下降的相关概念: 1.步长或学习率(learning rate):步长和学习率是一个东西,只是在不同的地方叫法不一样,以下叫做步长.步长决定了在梯度下降过程中,每一步沿梯度负方向前进的长度. 2.假设函数(hypothesis function):也就是我们的模型学习到的函数,记为. 3.损失函数(loss fu