Matplotlib基础使用

matplotlib

一、Matplotlib基础知识

Matplotlib中的基本图表包括的元素

  • x轴和y轴 axis
    水平和垂直的轴线
  • x轴和y轴刻度 tick
    刻度标示坐标轴的分隔,包括最小刻度和最大刻度
  • x轴和y轴刻度标签 tick label
    表示特定坐标轴的值
  • 绘图区域(坐标系) axes
    实际绘图的区域
  • 坐标系标题 title
    实际绘图的区域
  • 轴标签 xlabel ylabel
    实际绘图的区域
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas import Series,DataFrame

%matplotlib inline   # 魔法指令

包含单条曲线的图

  • 注意:y,x轴的值必须为数字
x=[1,2,3,4,5]
y=[2,4,6,8,10]
plt.plot(x,y)
[<matplotlib.lines.Line2D at 0x2f5e4d8f160>]

  • 绘制抛物线
x = np.linspace(-np.pi,np.pi,num=10)
y = x**2
plt.plot(x,y)
[<matplotlib.lines.Line2D at 0x2f5e4e35748>]

  • 绘制正弦曲线图
x = x
y = np.sin(x)
plt.plot(x,y)
[<matplotlib.lines.Line2D at 0x2f5e4e9ab38>]

包含多个曲线的图

1、连续调用多次plot函数

plt.plot(x,y)
plt.plot(x-1,y+2)
[<matplotlib.lines.Line2D at 0x2f5e4eb78d0>]

plt.plot(x,y,x+1,y-1)
[<matplotlib.lines.Line2D at 0x2f5e51832e8>,
 <matplotlib.lines.Line2D at 0x2f5e51834a8>]

2、也可以在一个plot函数中传入多对X,Y值,在一个图中绘制多个曲线

将多个曲线图绘制在一个table区域中:对象形式创建表图

  • a=plt.subplot(row,col,loc) 创建曲线图
  • a.plot(x,y) 绘制曲线图
ax1 = plt.subplot(2,2,1)
ax1.plot(x,y)

ax2 = plt.subplot(222)
ax2.plot(x+1,y-2)

ax3 = plt.subplot(223)
ax3.plot(x+3,y-1)

ax4 = plt.subplot(224)
ax4.plot(x**2,y-2)
[<matplotlib.lines.Line2D at 0x2f5e6462208>]

坐标轴界限

axis方法:设置x,y轴刻度值的范围

  • plt.axis([xmin,xmax,ymin,ymax])
plt.plot(x,y)
plt.axis([-6,6,-2,2])
[-6, 6, -2, 2]

plt.axis(‘off‘)

  • 关闭坐标轴
plt.plot(x,y)
plt.axis('off')
(-3.4557519189487724,
 3.4557519189487724,
 -1.0832885283134288,
 1.083288528313429)

设置画布比例:plt.figure(figsize=(a,b)) a:x刻度比例 b:y刻度比例 (2:1)表示x刻度显示为y刻度显示的2倍

plt.figure(figsize=(16,8))
plt.plot(x,y)
[<matplotlib.lines.Line2D at 0x2f5e63b6400>]

坐标轴标签

  • s 标签内容
  • color 标签颜色
  • fontsize 字体大小
  • rotation 旋转角度
  • plt的xlabel方法和ylabel方法 title方法
plt.plot(x,y)
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Title')
Text(0.5,1,'Title')

图例

legend方法

两种传参方法:

  • 分别在plot函数中增加label参数,再调用plt.legend()方法显示
  • 直接在legend方法中传入字符串列表
plt.plot(x,y,label='xian_1')
plt.plot(x-1,y+3,label='xian_2')
plt.legend()
<matplotlib.legend.Legend at 0x2f5e66057b8>

legend的参数
  • loc参数
  • loc参数用于设置图例标签的位置,一般在legend函数内
  • matplotlib已经预定义好几种数字表示的位置
plt.plot(x,y,label='xian_1')
plt.plot(x-1,y+3,label='xian_2')
plt.legend(loc=3)
<matplotlib.legend.Legend at 0x2f5e68f6c88>

字符串 数值 字符串 数值
best 0 center left 6
upper right 1 center right 7
upper left 2 lower center 8
lower left 3 upper center 9
lower right 4 center 10
right 5
  • ncol参数: ncol控制图例中有几列,在legend中设置ncol
plt.plot(x,y,label='xian_1')
plt.plot(x-1,y+3,label='xian_2')
plt.legend(loc=3,ncol=2)
<matplotlib.legend.Legend at 0x2f5e6ab4a90>

保存图片

使用figure对象的savefig函数来保存图片

fig = plt.figure()---必须放置在绘图操作之前

figure.savefig的参数选项

  • filename
    含有文件路径的字符串或Python的文件型对象。图像格式由文件扩展名推断得出,例如,.pdf推断出PDF,.png推断出PNG
    (“png”、“pdf”、“svg”、“ps”、“eps”……)
  • dpi
    图像分辨率(每英寸点数),默认为100
  • facecolor ,打开保存图片查看
    图像的背景色,默认为“w”(白色)
fig = plt.figure()

plt.plot(x,y,label='temp')
plt.plot(x-1,y+3,label='dist')
plt.legend(loc=3,ncol=2)

fig.savefig('./123.png',dpi=300)

设置plot的风格和样式

plot语句中支持除X,Y以外的参数,以字符串形式存在,来控制颜色、线型、点型等要素,语法形式为:
plt.plot(X, Y, ‘format‘, ...)

颜色

参数color或c

plt.plot(x,y,c='red',alpha=0.5,ls='steps',lw=3)
[<matplotlib.lines.Line2D at 0x2f5e6a4c668>]

颜色值的方式
  • 别名

    • color=‘r‘
  • 合法的HTML颜色名
    • color = ‘red‘
颜色 别名 HTML颜色名 颜色 别名 HTML颜色名
蓝色 b blue 绿色 g green
红色 r red 黄色 y yellow
青色 c cyan 黑色 k black
洋红色 m magenta 白色 w white
  • HTML十六进制字符串

    • color = ‘#eeefff‘
  • 归一化到[0, 1]的RGB元组
    • color = (0.3, 0.3, 0.4)
透明度

alpha参数

线型

参数linestyle或ls

线条风格 描述 线条风格 描述
‘-‘ 实线 ‘:‘ 虚线
‘--‘ 破折线 ‘steps‘ 阶梯线
‘-.‘ 点划线 ‘None‘ / ‘,‘ 什么都不画
线宽

linewidth或lw参数

点型
  • marker 设置点形
  • markersize 设置点形大小
标记 描述 标记 描述
‘s‘ 正方形 ‘p‘ 五边形
‘h‘ 六边形1 ‘H‘ 六边形2
‘8‘ 八边形
标记 描述 标记 描述
‘.‘ ‘x‘ X
‘*‘ 星号 ‘+‘ 加号
‘,‘ 像素
标记 描述 标记 描述
‘o‘ 圆圈 ‘D‘ 菱形
‘d‘ 小菱形 ‘‘,‘None‘,‘ ‘,None
标记 描述 标记 描述
‘1‘ 一角朝下的三脚架 ‘3‘ 一角朝左的三脚架
‘2‘ 一角朝上的三脚架 ‘4‘ 一角朝右的三脚架
plt.plot(x,y,marker='s')
[<matplotlib.lines.Line2D at 0x2f5e6b87dd8>]

# 绘制线      plt.plot(x1,y1,x2,y2)
# 网格线      plt.grid(True)  axes.grid(color,ls,lw,alpha)
# 获取坐标系  plt.subplot(n1,n2,n3)
# 坐标轴标签  plt.xlabel() plt.ylabel()
# 坐标系标题  plt.title()
# 图例        plt.legend([names],ncol=2,loc=1)  plt.plot(label='name')
# 线风格      --  -. : None  step
# 图片保存    figure.savefig()
# 点的设置    marker markersize markerfacecolor markeredgecolor\width
# 坐标轴刻度  plt.xticks(刻度列表,刻度标签列表) plt.yticks()
#             axes.set_xticks(刻度列表) axes.set_xticklabels(刻度标签列表)

二、2D图形

直方图

  • 是一个特殊的柱状图,又叫做密度图。

【直方图的参数只有一个x!!!不像条形图需要传入x,y】

plt.hist()的参数

  • bins
    直方图的柱数,可选项,默认为10
  • color
    指定直方图的颜色。可以是单一颜色值或颜色的序列。如果指定了多个数据集合,例如DataFrame对象,颜色序列将会设置为相同的顺序。如果未指定,将会使用一个默认的线条颜色
  • orientation
    通过设置orientation为horizontal创建水平直方图。默认值为vertical
data = [1,2,3,3,4,2,5]
plt.hist(data,bins=10)
(array([1., 0., 2., 0., 0., 2., 0., 1., 0., 1.]),
 array([1. , 1.4, 1.8, 2.2, 2.6, 3. , 3.4, 3.8, 4.2, 4.6, 5. ]),
 <a list of 10 Patch objects>)

返回值 :

1: 直方图向量,是否归一化由参数normed设定

2: 返回各个bin的区间范围

3: 返回每个bin里面包含的数据,是一个list

条形图:plt.bar()

  • 参数:第一个参数是索引。第二个参数是数据值。第三个参数是条形的宽度

-【条形图有两个参数x,y】

  • width 纵向设置条形宽度
  • height 横向设置条形高度

bar()、barh()

x = [1,2,3,4,5]
y = [2,4,6,8,10]
plt.bar(x,y)
<Container object of 5 artists>

plt.barh(x,y)
<Container object of 5 artists>

饼图

【饼图也只有一个参数x】

pie()
饼图适合展示各部分占总体的比例,条形图适合比较各部分的大小

普通各部分占满饼图

plt.pie([1,3,5])
([<matplotlib.patches.Wedge at 0x2f5e6d46198>,
  <matplotlib.patches.Wedge at 0x2f5e6d46668>,
  <matplotlib.patches.Wedge at 0x2f5e6d46ba8>],
 [Text(1.03366,0.376222,''),
  Text(-0.191013,1.08329,''),
  Text(-0.191013,-1.08329,'')])

普通未占满饼图:小数/比例

plt.pie([0.2,0.3,0.4])
([<matplotlib.patches.Wedge at 0x2f5e6d8d6d8>,
  <matplotlib.patches.Wedge at 0x2f5e6d8dba8>,
  <matplotlib.patches.Wedge at 0x2f5e6d95128>],
 [Text(0.889919,0.646564,''),
  Text(-0.646564,0.889919,''),
  Text(-0.339919,-1.04616,'')])

饼图阴影、分裂等属性设置

labels参数设置每一块的标签;

labeldistance参数设置标签距离圆心的距离(比例值)

autopct参数设置比例值小数保留位(%.3f%%);

pctdistance参数设置比例值文字距离圆心的距离

explode参数设置每一块顶点距圆心的长度(比例值,列表);

colors参数设置每一块的颜色(列表);

shadow参数为布尔值,设置是否绘制阴影

startangle参数设置饼图起始角度

arr=[11,22,31,15]
plt.pie(arr,labels=['a','b','c','d'])
([<matplotlib.patches.Wedge at 0x2f5e7da2f28>,
  <matplotlib.patches.Wedge at 0x2f5e7daa438>,
  <matplotlib.patches.Wedge at 0x2f5e7daa978>,
  <matplotlib.patches.Wedge at 0x2f5e7daaeb8>],
 [Text(0.996424,0.465981,'a'),
  Text(-0.195798,1.08243,'b'),
  Text(-0.830021,-0.721848,'c'),
  Text(0.910034,-0.61793,'d')])

# labeldistance参数设置标签距离圆心的距离(比例值)
arr=[11,22,31,15]
plt.pie(arr,labels=['a','b','c','d'],labeldistance=0.3)
([<matplotlib.patches.Wedge at 0x2f5e7dedb38>,
  <matplotlib.patches.Wedge at 0x2f5e7dedf98>,
  <matplotlib.patches.Wedge at 0x2f5e7df7518>,
  <matplotlib.patches.Wedge at 0x2f5e7df7a58>],
 [Text(0.271752,0.127086,'a'),
  Text(-0.0533994,0.295209,'b'),
  Text(-0.226369,-0.196868,'c'),
  Text(0.248191,-0.168526,'d')])

# autopct参数设置比例值小数保留位(%.3f%%);
arr=[11,22,31,15]
plt.pie(arr,labels=['a','b','c','d'],labeldistance=0.3,autopct='%.5f%%')
([<matplotlib.patches.Wedge at 0x2f5e7e3f668>,
  <matplotlib.patches.Wedge at 0x2f5e7e3fd68>,
  <matplotlib.patches.Wedge at 0x2f5e7e47518>,
  <matplotlib.patches.Wedge at 0x2f5e7e47c88>],
 [Text(0.271752,0.127086,'a'),
  Text(-0.0533994,0.295209,'b'),
  Text(-0.226369,-0.196868,'c'),
  Text(0.248191,-0.168526,'d')],
 [Text(0.543504,0.254171,'13.92405%'),
  Text(-0.106799,0.590419,'27.84810%'),
  Text(-0.452739,-0.393735,'39.24051%'),
  Text(0.496382,-0.337053,'18.98734%')])

# explode参数设置每一块顶点距圆心的长度(比例值,列表);
arr=[11,22,31,15]
plt.pie(arr,labels=['a','b','c','d'],labeldistance=0.3,shadow=True,explode=[0.2,0.3,0.2,0.4])
([<matplotlib.patches.Wedge at 0x2f5e7e8ca90>,
  <matplotlib.patches.Wedge at 0x2f5e7e95240>,
  <matplotlib.patches.Wedge at 0x2f5e7e95a58>,
  <matplotlib.patches.Wedge at 0x2f5e7e9d2b0>],
 [Text(0.45292,0.21181,'a'),
  Text(-0.106799,0.590419,'b'),
  Text(-0.377282,-0.328113,'c'),
  Text(0.579113,-0.393228,'d')])

%m.nf
m 占位
n 小数点后保留几位
f 是以float格式输出

散点图:因变量随自变量而变化的大致趋势

【散点图需要两个参数x,y,但此时x不是表示x轴的刻度,而是每个点的横坐标!】

scatter()

plt.scatter(x,y)
<matplotlib.collections.PathCollection at 0x2f5e7edbe10>

plt.scatter(x,y,marker=‘d‘,c="rbgy") 设置不同的散点颜色

x = np.random.random(size=(30,))
y = np.random.random(size=(30,))
plt.scatter(x,y)
<matplotlib.collections.PathCollection at 0x2f5e7f519e8>

原文地址:https://www.cnblogs.com/zyyhxbs/p/11708515.html

时间: 2024-11-05 23:31:10

Matplotlib基础使用的相关文章

数据分析与展示——Matplotlib基础绘图函数示例

Matplotlib库入门 Matplotlib基础绘图函数示例 pyplot基础图表函数概述 函数 说明 plt.plot(x,y,fmt, ...) 绘制一个坐标图 plt.boxplot(data,notch,position) 绘制一个箱体图 plt.bar(left,height,width,bottom) 绘制一个条形图 plt.barh(width,bottom,left,height) 绘制一个横向条形图 plt.polar(theta,r) 绘制极坐标图 plt.pie(dat

Matplotlib基础图形之散点图

Matplotlib基础图形之散点图 散点图特点: 1.散点图显示两组数据的值,每个点的坐标位置由变量的值决定 2.由一组不连续的点组成,用于观察两种变量的相关性(正相关,负相关,不相关) 3.例如:身高-体重,纬度-温度,等等 示例代码: import osimport timeimport matplotlib.pyplot as pltbasedir = os.path.dirname(os.path.abspath(__file__))resultdir = os.path.join(b

数据可视化之——matplotlib基础学习

一.Matplotlib 基础用法: import matplotlib.pyplot as plt import numpy as np x = np.linspace(-1, 1, 100) # 生成100个点 y = 2*x + 1 plt.plot(x, y) plt.show() 结果: 二.Matplotlib figure图像: import matplotlib.pyplot as plt import numpy as np x = np.linspace(-1, 1, 100

python matplotlib 基础

简介 matplotlib是python里面的一个专业绘图工具库,如果想通过python来绘制漂亮的图形,那么一定少不了它了. 准备 在开始画图之前需要安装numpy以及matplotlib库,当然python基本库也必不可少,numpy是一个专业的数组,矩阵处理工具. ? Python ? Numpy - this is the module which does most array and mathematical manip- ulation ? Matplotlib - this is

python数据图形化—— matplotlib 基础应用

matplotlib是python中常用的数据图形化工具,用法跟matlab有点相似.调用简单,功能强大.在Windows下可以通过命令行 pip install matplotlib 来进行安装. 以下为一些基础使用的例子: 1.绘制直线 先通过numpy生成在直线 y = 5 * x + 5 上的一组数据,然后将其绘制在图表上 1 import numpy as np 2 import matplotlib.pyplot as plot 3 4 x = np.linspace(1, 10,

matplotlib基础整理

matplotlib主要从下面几个方面进行整理: 折线图绘制:https://douzujun.github.io/page/%E6%95%B0%E6%8D%AE%E6%8C%96%E6%8E%98%E7%AC%94%E8%AE%B0/3-%E5%8F%AF%E8%A7%86%E5%8C%96%E5%BA%93matpltlib/plt_1.html 子图绘制:https://douzujun.github.io/page/%E6%95%B0%E6%8D%AE%E6%8C%96%E6%8E%98

Pandas与Matplotlib基础

pandas是Python中开源的,高性能的用于数据分析的库.其中包含了很多可用的数据结构及功能,各种结构支持相互转换,并且支持读取.保存数据.结合matplotlib库,可以将数据已图表的形式可视化,反映出数据的各项特征. 先借用一张图来描述一下pandas的一些基本使用方法,下面会通过一些实例对这些知识点进行应用. 一.安装pandas库 pandas库不属于Python自带的库,所以需要单独下载,如果已经安装了Python,可以使用pip工具下载pandas: pip install pa

matplotlib基础知识全面解析

图像基本知识: 通常情况下,我们可以将一副Matplotlib图像分成三层结构: 1.第一层是底层的容器层,主要包括Canvas.Figure.Axes: 2.第二层是辅助显示层,主要包括Axis.Spines.Tick.Grid.Legend.Title等,该层可通过set_axis_off()或set_frame_on(False)等方法设置不显示: 3.第三层为图像层,即通过plot.contour.scatter等方法绘制的图像. 容器层:容器层主要由Canvas.Figure.Axes

matplotlib基础应用

最流行的Python底层绘图库,主要做数剧可视化图表,名字取材与MATLAB,模仿MATLAB构建. 基本要点: from matplotlib import pyplot as plt   导入pyplot fig=plt.figure(figure=(20,8),dpi=80)  figure图形图标的意思,在这里指的就是我们画的图  通过实例化一个figure并且传递参数,能够在后台自动使用该figure  在图像模糊的时候可以传入dpi参数,让图片更清晰 x=range(2,26,2)x