图论基础——最短路算法集锦

最短路算法有个基础——————松弛操作(在大多数最短路算法都会涉及)

if(d[e[i].v]>d[e[i].u]+w[i])//如果这条边的终点到源点的距离大于起点到源点距离,就替换。
{
  d[e[i].v]>d[e[i].u]+w[i];
}

最短路算法一共有多少种方法我不知道,在这里我只想记录4种:

•Dijkstra:求单源点最短路(不含负边权)

•Bellman-ford:求单源点最短路(可含负边权)

•SPFA(使用队列优化后的Bellman-ford)

•Floyd:求各点间的最短路(可含负边权)

Firstly,Bellman-Ford算法

•算法步骤:

1、初始化:将除源点外的所有顶点最短距离估计值d[v]=inf,d[s]=0;

2、迭代求解:反复对边集E中每条边进行松弛操作,使得顶点集V中每个顶点v的最短距离估计值逐步逼近其最短距离;

3、检验负权回路:如果有存在点v,使得d[v]>d[u]+w[u][v],则有负权回路,返回false;

4、返回true,源点到v的最短距离保存在d[v]中。

那就上一个代码模版吧~

void Bellman()
{
    for(int j=1;j<=n-1;j++)//每一次循环遍历所有的节点,遍历n-1次
       {
        k=0 ; //判断每一次遍历中是否有过松弛,若没有,后面也不会再有就可弹出循环
        for(int i=1;i<=2*m;i++)
        {
            if(dis[e[i].v ]>dis[e[i].u ]+e[i].w )
            {
                dis[e[i].v ]=dis[e[i].u ]+e[i].w ;
                k=1; //有松弛就记为1
            }
        }
        if(k==0)//判断
        {
            break;
        }
    }
    printf("%d",dis[n]);//输出到最后一个点的最短路
}

中间关于“k”的部分,只是一种优化,可以删去,不影响算法。

Secondly,SPFA算法

  准确地说,SPFA就是用队列对上面那个算法进行了一个优化,其实很简单。

  适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高SPFA算法便派上用场了。我们约定有向加权图G不存在负权回路,即最短路径一定存在。当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重点。

  算法思想:我们用数组d记录每个结点的最短路径估计值,用邻接表来存储图G。我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止。所以需要一个vis数组进行判断是否在队列中。

  

void SPFA()
{
    queue<int>q;
    q.push(1);//入队
    vis[1]=1;
    while(!q.empty())//队列不为空
    {
        int u=q.front();
        vis[u]=0;//出队,记为0
        q.pop();
        for(int i=head[u];i!=0;i=e[i].next )
        {
            int v=e[i].v ;
            if(dis[v]>dis[u]+e[i].w )//松弛操作
            {
                dis[v]=dis[u]+e[i].w ;
                if(!vis[v])//判断它是否在队列中
                {
                    vis[v]=1;
                    q.push(v);
                }
            }
        }
    }
    printf("%d",dis[n]);//这里输出的是源点到最后一个点的最短路
}

Thirdly,Dijkstra算法

  算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将其加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

实现步骤:

1、初始时,S只包含源点,即S=v,距离为0。U包含除v外的其他顶点,U中顶点u距离为边上的权;

2、从U中选取一个距离v最小的顶点k,把k加入S中(该选定的距离就是v到k的最短路径长度);3、以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值为经过顶点k的值(松弛操作);

4、重复步骤2和2直到所有顶点都包含在S中。

最重要的是Dijkstra可以用优先队列来进行优化

void Dijkstra()
{
    typedef pair<int,int>p;
    priority_queue<p,vector<p>,greater<p> >q;
    dis[1]=0;
    q.push(make_pair(dis[1],1));//将这个点到源点的距离与这个点进行配对
    while(!q.empty())
    {
        int u=q.top().second;//u=这个组合中的第二个元素——点
        q.pop();
        if(vis[u])
        {
            continue;
        }
        vis[u]=1;
        for(int i=head[u];i!=0;i=e[i].next )
        {
            int v=e[i].v ;
            if(dis[v]>dis[u]+e[i].w )//松弛操作
            {
                dis[v]=dis[u]+e[i].w ;
                q.push(make_pair(dis[v],v));//将这个点到源点的距离与这个点进行配对
            }
        }
    }
    printf("%d",dis[n]);
}

  再次强调,Dijkstra不能处理负权边

Finally,Floyd


  其实它就是一个Dp一样去不断改变中间点、起点和终点,不断地去枚举并改变它的两点(起点和终点)之间的最小值,其实~很简单。在此不做过多赘述(个人觉得除了能求出每两个点之间的最短路径也没有多大用处,不但不能处理负权边,而且时间复杂度还特高--O(n3))。

  上代码:

void Floyd
{
    for(int k=1;k<=n;++k)//必须先循环中间点
    {
        for(int i=1;i<=n;++i)
        {
            for(int j=1;j<=n;++j)
            {
                if(i!=j&&dis[i][j]>dis[i][k]+dis[k][j])
                {
                    dis[i][j]=dis[i][k]+dis[k][j];
            }
            }
        }
    }
    printf("%d\n",dis[1][n]);//输出源点到最后一个点的距离
} 

以上就是我的一些总结,如有纰漏,请留言~~~~~~

原文地址:https://www.cnblogs.com/jhl0824/p/11618619.html

时间: 2024-08-15 01:55:54

图论基础——最短路算法集锦的相关文章

从存图到最短路算法的图论总结

INTRODUCTION: 图论算法在计算机科学中扮演着很重要的角色,它提供了对很多问题都有效的一种简单而系统的建模方式.很多问题都可以转化为图论问题,然后用图论的基本算法加以解决.--百度百科 对于OI而言,图是指由若干给定的点及若干条连接两点的线(边)所构成的图形 借助图论知识,我们往往可以将一些复杂的问题转化到基础的图论算法上,进而使用已有算法解决全新问题 那么想如果想要运用图论,首先要从存图开始 前排感谢教我图论的周润喵老师,syc学长,就序老师 可是我还是没学会 一,存图 对于一个图而

图论之最短路01——最短路矩阵(FLOYD)算法

%======================================================== %最短路矩阵算法,FLOYD算法 %针对性:方案预算,能求出所有点之间的最短路(最小费用等) %======================================================== function D=zuiduanjulijuzhen(quanzhijuzhen) n=length(quanzhijuzhen); D=quanzhijuzhen; m

最短路算法汇总

校赛完了,这次校赛,做的很差,一个算法题没有,2个水题,1个贪心,概率DP,DP,数论题.DP还没开始研究,数论根本不会,数学太差了,省赛时卡数论,校赛依然卡数论,我擦,还是得继续学习啊! 一把锈迹斑斑的剑,只有不断的磨砺,才能展露锋芒! 以下为最短路总结: 最短路问题可分为: 一.单源最短路径算法,解决方案:Bellman-Ford算法,Dijkstra算法,SPFA 二.每对顶点间的最短路径算法:Floyd: (1).Dijkstra算法: (经典的算法,可以说是最短路问题的首选事例算法,但

数据结构:图论基础

图概述 图(Graph)是一种比线性结构和树形结构都要复杂的数据结构.简单讲,图是由表示数据元素的的集合V和表示数据之间关系的集合E组成.其中,数据元素常称作顶点(vertex),数据之间的关系常称作边(edge).故图可记为G=<V,E>,其中V是顶点的有穷非空集合,E是边的集合.在图中顶点的前驱和后继是不设限制的,因此图描述的是一种网状关系. 无向图 若边是无序的或者说是无向的,则称此图是无向图.若无向图中有边(v1,v2)(无向图中边用圆括号表示),则显然(v2,v1)和(v1,v2)是

基础最短路

基础最短路 Description 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗? Input 输入包括多组数据.每组数据第一行是两个整数N.M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路.N=M=0表示输入结束.接下来M行,每行包括3

彻底搞懂最短路算法

转载自:戳 彻底弄懂最短路径问题 只想说:温故而知新,可以为师矣.我大二的<数据结构>是由申老师讲的,那时候不怎么明白,估计太理论化了(ps:或许是因为我睡觉了):今天把老王的2011年课件又看了一遍,给大二的孩子们又讲了一遍,随手谷歌了N多资料,算是彻底搞懂了最短路径问题.请读者尽情享用…… 我坚信:没有不好的学生,只有垃圾的教育.不过没有人理所当然的对你好,所以要学会感恩. 一.问题引入 问题:从某顶点出发,沿图的边到达另一顶点所经过的路径中,各边上权值之和最小的一条路径——最短路径.解决

图论基础知识总结

图论基础知识总结 前言 因为博主太菜,好多之前学过的图论算法都要不记得了,于是开了这篇博文提醒自己要记得复习图论. 代码 #include<bits/stdc++.h> using namespace std; #define gc() getchar() inline int In(){ char c=gc(); int x=0,ft=1; for(;c<'0'||c>'9';c=gc()) if(c=='-') ft=-1; for(;c>='0'&&c&

【啊哈!算法】算法7:Dijkstra最短路算法

上周我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最短路”.本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径”.例如求下图中的1号顶点到2.3.4.5.6号顶点的最短路径. <ignore_js_op> 与Floyd-Warshall算法一样这里仍然使用二维数组e来存储顶点之间边的关系,初始值如下. <ignore_js_op> 我们还需要用一个一维数组dis来存储1号顶点到其余各个顶点的初始路程,如下.

最短路算法及其延伸

个人算法训练题集:http://acm.hust.edu.cn/vjudge/contest/toListContest.action#contestType=0&contestRunningStatus=0&contestOpenness=0&title=风斩冰华&manager= 密码xwd,欢迎大家一起来学习. 首先复习一下最短路问题,即求某两点之间边权最小的一条路径.这样就延伸出了两个子问题: 求任意两点的距离,还是求图上固定一个起点到某点的距离? 验题:http: