深入解读synchronized和ReentrantLock

故事起源于上次阿里电面的3个问题。问题1,jvm中线程分为哪些状态。问题2,在执行Thread.start()方法后,线程是不是马上运行。问题3,java中的synchronized和ReentrantLock有什么不同。当时我的回答不是很好,就不说了,面试之后,在网上搜了很多文章,对照着jdk源码(1.8),发现这3个问题存在着一些联系,接下来,就从这3个问题入手,仔细解读一下线程,synchronized和ReentrantLock。

问题1 jvm中的线程分为哪些状态

这个可以看一下jdk中的Thread的State,里面有详细的注释,大概含义如下所示

    public enum State {
        NEW, // 初始化,还没开始执行
        RUNNABLE, // 执行中
        BLOCKED, // 阻塞
        WAITING, // 等待
        TIMED_WAITING, // 超时等待
        TERMINATED; // 执行完成
    }

需要注意的是,这个只是jvm中的线程状态,并不是操作系统中的线程状态。操作系统的线程状态中还有一个就绪状态(ready)

关于线程状态的转换,盗用了这张图。来源

线程(英语:thread)是操作系统能够进行运算调度的最小单位。

问题2 在执行Thread.start()方法后,线程是不是马上运行。

先说答案,不是。

在调用Thread的start方法后,Thread的状态变为RUNNABLE。那么现在这个线程到底有没有运行呢?查看jdk源码可知,start方法中调用的是start0的native方法,由他调用底层真正地在操作系统创建一个线程。

操作系统创建的线程马上就会运行吗?答案是否定的。线程需要被cpu调度,分配了时间片之后才会真正的运行。因此jvm中的RUNNABLE状态其实对应了两个状态,readyrunnable。创建的新线程是ready状态,被cpu调度后成为runnale状态,这时候才是真正的运行状态。

问题3 java中的synchronized和ReentrantLock有什么不同。

这个问题比较庞大,我们先从线程的状态入手,来看一下这两个锁的区别。

线程状态

首先,我们来思考一下,这两个锁都会阻止线程的运行,因此肯定会修改线程的状态,那么他们阻止之后的线程状态是否一致呢?我们带着这个疑问通过代码来看一看。

创建一个使用ReentrantLock锁的线程

public class ThreadStatusTest {
    static final ReentrantLock lock = new ReentrantLock();

    public static void main(String[] args) {

        Thread thread1 = new Thread(new Work("thread1"));
        Thread thread2 = new Thread(new Work("thread2"));

        thread1.start();
        thread2.start();

        try {
            // @1
            Thread.sleep(1);
        }catch(Exception ex){

        }

        System.out.println("thread1状态" + thread1.getState().toString());
        System.out.println("thread2状态" + thread2.getState().toString());

    }

    static class Work implements Runnable{
        private String name;
        public Work(String name){
            this.name = name;
        }
        @Override
        public void run(){
            try {
                lock.lock();
                // @2
                Thread.sleep(1 * 1000);
                System.out.println(name+"执行完成");
            }
            catch(Exception ex){

            }
            finally {
                lock.unlock();
            }
        }
    }
}

保留@1 @2的sleep,我们测试一下,看看打印的情况,可以看到先执行的线程1因为执行了内部的sleep后为TIMED_WATTING状态,后执行的线程2为WAITING状态。

我们注释掉@1 @2的sleep,经过多次测试,我们发现thread2有时会出现BLOCKEDWAITTING状态(这里忽略掉RUNNANLE和TERMINATED状态)。我们带着疑问继续测试synchronized。

和上面方法相同,我们创建一个使用synchronized锁的线程

public class ThreadStatusTest {

    public static void main(String[] args) {

        Thread thread1 = new Thread(new SyncWork("thread1"));
        Thread thread2 = new Thread(new SyncWork("thread2"));

        thread1.start();
        thread2.start();

        try {
            // @1
            Thread.sleep(1);
        }catch(Exception ex){

        }

        System.out.println("thread1状态" + thread1.getState().toString());
        System.out.println("thread2状态" + thread2.getState().toString());

    }

    static class SyncWork implements Runnable{
        private String name;
        public SyncWork(String name){
            this.name = name;
        }
        @Override
        public void run(){
            synchronized (SyncWork.class){
                try {
                    // @2
                    Thread.sleep(1 * 1000);
                    System.out.println(name+"执行完成");
                }catch(Exception ex){

                }
            }
        }
    }
}

和上面相同,先保留@1 @2的sleep,我们测试一下,看看打印的情况,可以看到线程1因为执行了内部的sleep后为TIMED_WATTING状态,但是和ReentrantLock不同的是,线程2为BLOCKED状态。

我们注释掉@1 @2的sleep,经过多次测试,我们发现thread2只有BLOCKED状态(这里忽略掉RUNNANLETERMINATED状态)。

因此我们在不看源码的情况下,可以大概得到结论:

  • synchronized阻塞的线程状态为BLOCKED
  • ReentrantLock阻塞的线程状态为BLOCKED或者WAITTING

为什么两个锁阻止的线程状态是不同的呢?我们仔细看一下Thread.State的注释,主要是BLOCKEDWAITINGTIMED_WATTING这三个

        /**
         * Thread state for a thread blocked waiting for a monitor lock.
         * A thread in the blocked state is waiting for a monitor lock
         * to enter a synchronized block/method or
         * reenter a synchronized block/method after calling
         * {@link Object#wait() Object.wait}.
         */
        BLOCKED,

        /**
         * Thread state for a waiting thread.
         * A thread is in the waiting state due to calling one of the
         * following methods:
         * <ul>
         *   <li>{@link Object#wait() Object.wait} with no timeout</li>
         *   <li>{@link #join() Thread.join} with no timeout</li>
         *   <li>{@link LockSupport#park() LockSupport.park}</li>
         * </ul>
         *
         * <p>A thread in the waiting state is waiting for another thread to
         * perform a particular action.
         *
         * For example, a thread that has called <tt>Object.wait()</tt>
         * on an object is waiting for another thread to call
         * <tt>Object.notify()</tt> or <tt>Object.notifyAll()</tt> on
         * that object. A thread that has called <tt>Thread.join()</tt>
         * is waiting for a specified thread to terminate.
         */
        WAITING,

        /**
         * Thread state for a waiting thread with a specified waiting time.
         * A thread is in the timed waiting state due to calling one of
         * the following methods with a specified positive waiting time:
         * <ul>
         *   <li>{@link #sleep Thread.sleep}</li>
         *   <li>{@link Object#wait(long) Object.wait} with timeout</li>
         *   <li>{@link #join(long) Thread.join} with timeout</li>
         *   <li>{@link LockSupport#parkNanos LockSupport.parkNanos}</li>
         *   <li>{@link LockSupport#parkUntil LockSupport.parkUntil}</li>
         * </ul>
         */
        TIMED_WAITING,

对照着上面线程状态转换的图就大概了解了。但是其中一些细节,例如什么是monitor,哪里有调用wait(),LockSupport.park()等方法。
这些细节问题就需要看synchronized对应的字节码和jdk中的ReentrantLock源码。

源码实现
synchronized

synchronized是java中的关键字,它是在jvm层面实现的,所以我们可以查看一下字节码看看它是如何实现的。

我们使用javap将上面SyncWork的字节码显示出来,如下所示

  public void run();
    descriptor: ()V
    flags: ACC_PUBLIC
    Code:
      stack=3, locals=4, args_size=1
         0: ldc           #3                  // class design/demo/ThreadStatusTest$SyncWork
         2: dup
         3: astore_1
         4: monitorenter
         5: ldc2_w        #4                  // long 1000l
         8: invokestatic  #6                  // Method java/lang/Thread.sleep:(J)V
        11: getstatic     #7                  // Field java/lang/System.out:Ljava/io/PrintStream;
        14: new           #8                  // class java/lang/StringBuilder
        17: dup
        18: invokespecial #9                  // Method java/lang/StringBuilder."<init>":()V
        21: aload_0
        22: getfield      #2                  // Field name:Ljava/lang/String;
        25: invokevirtual #10                 // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
        28: ldc           #11                 // String 执行完成
        30: invokevirtual #10                 // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
        33: invokevirtual #12                 // Method java/lang/StringBuilder.toString:()Ljava/lang/String;
        36: invokevirtual #13                 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
        39: goto          43
        42: astore_2
        43: aload_1
        44: monitorexit
        45: goto          53
        48: astore_3
        49: aload_1
        50: monitorexit
        51: aload_3
        52: athrow
        53: return

我们仔细观察生成的字节码会发现synchronized包裹的代码块在jvm中生成了monitorentermonitorenter这两个命令。若想了解这两个命令的实现需要一定的c知识,这篇文章讲的很详细,可以看一下。

synchronized关键字经过编译之后,会在同步块的前后分别形成monitorenter和monitorexit这两个字节码指令。当我们的JVM把字节码加载到内存的时候,会对这两个指令进行解析。这两个字节码都需要一个Object类型的参数来指明要锁定和解锁的对象。如果Java程序中的synchronized明确指定了对象参数,那么这个对象就是加锁和解锁的对象;如果没有明确指定,那就根据synchronized修饰的是实例方法还是类方法,获取对应的对象实例或Class对象来作为锁对象

说的简单点就是synchronized会对一个对象的监视器(monitor)进行获取,而这个获取的过程是排他的,同一时刻只有一个线程能获取到此监视器。

而这个对象是什么呢?这就要看我们是如何使用的synchronized。

  • 普通同步方法的synchronized。此对象代表当前的实例对象
  • 静态同步方法。此对象代表当前的类。即xx.class。
  • 同步方法快。此对象代表你指定的对象。

那么这个监视器存放在哪里呢?存放在该对象的对象头中。对象头中有一个名为MarkWord的部分,该部分记录了对象和锁有关的信息。具体的可以看看这个文章

由于synchronized是在jvm层的实现,因此阅读它的源码需要c的知识,这个理解起来还是有些难度的。但是ReentrantLock就不同了,这个锁是在jdk中的实现,因此可以很方便的查看源码。

ReentrantLock

还是使用上面的例子,ReentrantLock的使用很简单,使用new ReentrantLock(boolean isFair)来创建一个公平或者非公平锁,使用.lock()方法加锁。使用.unlock()方法,因此我们就从这三个方法入手,来简单的看一下它是如何实现锁的。

它的构造方法有两个,默认是构造一个非公平锁,这个也是我们经常用的,如下所示

    public ReentrantLock() {
        sync = new NonfairSync();
    }

    /**
     * Creates an instance of {@code ReentrantLock} with the
     * given fairness policy.
     *
     * @param fair {@code true} if this lock should use a fair ordering policy
     */
    public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }

无论是NonfairSync还是FairSync他们都是继承了Sync,并且最终继承了AbstractQueuedSynchronizer,这就是传说中的AQS。

AQS中的同步等待队列提供了线程状态管理的基本组件,他提供了一些钩子函数供子类继承时扩展。而这个同步队列主要是由一个带头尾指针的双向链表组成,jdk中有详细的注释。

static final class Node {

        // 等待状态,主要有3个值。0初始化。-1(SIGNAL)需要唤醒后续节点线程。1(CANCELLED)取消等待。
        volatile int waitStatus;

        volatile Node prev;

        volatile Node next;

        // 当前节点对应的线程
        volatile Thread thread;
...

    private transient volatile Node head;

    private transient volatile Node tail;

先大体说一下同步等待队列的特点:先进先出。获取锁失败的线程构造节点加入队列尾部,阻塞自己,等待唤醒。执行完成的线程从头部移出队列,并唤醒后续节点的线程。头结点是当前获取到锁的线程。

还有两个较为重要的参数

// 位于AbstractOwnableSynchronizer类(AQS的父类),只有独占锁使用,代表当前获取锁的线程
private transient Thread exclusiveOwnerThread;

// 线程被重入的次数,可能大于0,由于可见性问题使用volatile修饰
private volatile int state;

构造方法先看到这里,我们继续解析下一步,.lock()
查看代码可知真正的lock实现在NonfairSync中,如下所示

final void lock() {
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }

if代码块的上面部分很简单,使用CAS判断该锁有没有占用,没有占用的话将state置为1,并修改锁的当前线程。重点看看acquire(1)方法,这个方法在AQS类中

    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

主要是三个方法,tryAcquire(arg)方法是在Sync类中实现的,非公平锁为nonfairTryAcquire

final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                // 当前线程重入
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

可以看到这个方法中有部分代码是和上面重复的,这也是出于性能考虑,特殊情况早点返回而不再向下执行。
若是返回true表示获取到锁,若是返回false表示为获取到锁,继续向下执行。接下来先看addWaiter(Node.EXCLUSIVE)方法,这个方法在AQS类中

   /**
     * Creates and enqueues node for current thread and given mode.
     *
     * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
     * @return the new node
     */
    private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode); // 创建一个当前线程的节点
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
        if (pred != null) {
            // 尾节点不为空,将该节点添加到队尾
            node.prev = pred; // 这里先确定次序,再使用原子操作更新尾节点
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        enq(node);
        return node;
    }

若队列为空,将进入enq(node)方法,这个方法在AQS类中,如下所示

    private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) { // Must initialize
                // 队列为空时,原子操作构造头结点
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                // 和上层相同代码,添加到队尾
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }

这是一个死循环,保证节点添加到队列中,和上面类似,包含了和上层方法重复的代码。注意一下,当前的头结点是new Node(),里面的线程是空的。

现在节点已经添加到队列中了,接下来怎么做,
我们继续看下一个方法acquireQueued(final Node node, int arg),这个方法在AQS中,如下所示

    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node); // 当前正在执行的节点置为头结点,这里没有使用原子操作。
                    p.next = null; // help GC
                    failed = false;
                    return interrupted; // 唯一出口
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt()) // 这里会阻塞,直到前面的节点线程执行完成
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

看到这里发现头结点有点类似哨兵节点。头结点为正在执行的节点,头结点执行完成后通知后续节点解除阻塞,后续节点置为头结点,开始执行。有一种特殊的情况,看一下上面代码的第二个if代码段,主要是shouldParkAfterFailedAcquire方法,如下所示

    /**
     * Checks and updates status for a node that failed to acquire.
     * Returns true if thread should block. This is the main signal
     * control in all acquire loops.  Requires that pred == node.prev.
     *
     * @param pred node's predecessor holding status
     * @param node the node
     * @return {@code true} if thread should block
     */
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;
        if (ws > 0) {
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

Node.SIGNAL的定义如下

waitStatus value to indicate successor‘s thread needs unparking

即只有当前节点的状态为SIGNAL时才会唤醒后续节点,因此节点若想唤醒,必须保证前驱节点状态为SIGNAL。但是有些节点可能取消了等待,因此需要从后向前遍历,直到确定前驱节点为SIGNAL状态,然后就可以安心阻塞了。阻塞使用的是LockSupport,一种类似wait,notify的方法。

    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }

执行了该方法后,线程就持续阻塞直到被唤醒。lock()方法到此就结束了,我们接下来看unlock()

因为已经进行了加锁,阻塞了其他线程,所以解锁时相对简单。

    public void unlock() {
        sync.release(1);
    }

方法很简单,直接看release方法,该方法在AQS中实现

    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }

我们先看tryRelease方法,使用的是Sync子类中的实现

        protected final boolean tryRelease(int releases) {
            int c = getState() - releases;
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            if (c == 0) {
                free = true;
                setExclusiveOwnerThread(null);
            }
            setState(c);
            return free;
        }

考虑线程重入的情况,当state为0时,说明当前没有线程占用锁,可以进行下一步操作。回到上一层的release方法。操作队列头结点,通知后继节点。

重点看一下通知的方法,即unparkSuccessor

   private void unparkSuccessor(Node node) {
        /*
         * If status is negative (i.e., possibly needing signal) try
         * to clear in anticipation of signalling.  It is OK if this
         * fails or if status is changed by waiting thread.
         */
        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);

        /*
         * Thread to unpark is held in successor, which is normally
         * just the next node.  But if cancelled or apparently null,
         * traverse backwards from tail to find the actual
         * non-cancelled successor.
         */
        Node s = node.next;
        // 后继节点为空或者为取消状态,从队尾向前遍历,找到相邻的“正常”节点
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            // 唤醒后继节点的线程
            LockSupport.unpark(s.thread);
    }

解锁到这里也就结束了。总结一下:ReentrantLock主要是用了一个巧妙的数据结构(带头尾指针的双链表)和CAS加自旋以及使用LockSupport的park,unpark(类似wait,notify)来实现加锁和解锁。

遗留问题

我们上面的测试代码中,使用ReentrantLock时,被阻塞的线程出现了BLOCKED状态,但是如果按照ReentrantLock的源码,出现WAITTING状态是正常的,但并不应该出现BLOCKED状态,若是有读者明白原因,请在评论中告知,谢谢了。

写在后面

对照着源码看,其实流程很清晰。查看源码的过程中也会发现,源码中有很详细的注释,我们一定要仔细的看注释,这样才能理解的更透彻。

到这里全文就结束了,文中一些内容参考了大佬的这篇文章,大佬写的比我详细,但是自己还想结合碰到的问题梳理一遍,自认为能加强理解,若是感觉作者写的不好可以去看一下原文,相信一定能帮助到您。

原文地址:https://www.cnblogs.com/AceZhai/p/12024017.html

时间: 2024-11-07 16:33:27

深入解读synchronized和ReentrantLock的相关文章

synchronized和ReentrantLock区别

一.什么是sychronized sychronized是java中最基本同步互斥的手段,可以修饰代码块,方法,类. 在修饰代码块的时候需要一个reference对象作为锁的对象. 在修饰方法的时候默认是当前对象作为锁的对象. 在修饰类时候默认是当前类的Class对象作为锁的对象. synchronized会在进入同步块的前后分别形成monitorenter和monitorexit字节码指令.在执行monitorenter指令时会尝试获取对象的锁,如果此没对象没有被锁,或者此对象已经被当前线程锁

synchronized和ReentrantLock

一.什么是sychronized sychronized是java中最基本同步互斥的手段,可以修饰代码块,方法,类. 在修饰代码块的时候需要一个reference对象作为锁的对象. 在修饰方法的时候默认是当前对象作为锁的对象. 在修饰类时候默认是当前类的Class对象作为锁的对象. synchronized会在进入同步块的前后分别形成monitorenter和monitorexit字节码指令.在执行monitorenter指令时会尝试获取对象的锁,如果此没对象没有被锁,或者此对象已经被当前线程锁

Synchronized与ReentrantLock的区别

Java在编写多线程程序时,为了保证线程安全,需要对数据同步,经常用到两种同步方式就是Synchronized和重入锁ReentrantLock. 相同点和区别 相同点:这两种同步方式有很多相似之处,它们都是加锁方式同步,而且都是阻塞式的同步,也就是说当如果一个线程获得了对象锁,进入了同步块,其他访问该同步块的线程都必须阻塞在同步块外面等待,而进行线程阻塞和唤醒的代价是比较高的(操作系统需要在用户态与内核态之间来回切换,代价很高,不过可以通过对锁优化进行改善). 区别:这两种方式最大区别就是对于

synchronized和ReentrantLock底层原理差别

网上很多synchronized和ReentrantLock使用和编程时写法差异的总结,这里就不列举了: 这里主要列举一下在底层实现上的一些区别: 1.synchronized synchronized关键字需要一个引用类型的参数,这个参数也叫做监听器(monitor):JVM通过这个监听器来管理所有需要同步的线程(synchronized这个监听器的所有线程)运行状态,成功占有该monitor的线程即成为该监听器的owner,其他线程则被状态切换至阻塞状态并维护在一个队列中准备下一次的竞争:

synchronized与ReentrantLock的介绍、使用、适合场景及比较

JDK 5.0为开发人员开发高性能的并发应用程序提供了一些很有效的新选择,目前存在两种锁机制:synchronized和Lock,Lock接口及其 实现类是JDK5增加的内容,ReentrantLock是Lock的实现.在实际的工作中,大家对synchronized和ReentrantLock都使用的比较多,今天对这 两种锁机制进行了总结并分享给各位朋友们,希望对大家有所帮助. 一.synchronized 1).介绍 synchronized 是Java语言的关键字,可用来给对象和方法或者代码

synchronized和ReentrantLock的区别

synchronized和ReentrantLock的区别 synchronized是和if.else.for.while一样的关键字,ReentrantLock是类,这是二者的本质区别. 既然ReentrantLock是类,那么它就提供了比synchronized更多更灵活的特性,可以被继承.可以有方法.可以有各种各样的类变量,ReentrantLock比synchronized的扩展性体现在几点上: (1)ReentrantLock可以对获取锁的等待时间进行设置,这样就避免了死锁 (2)Re

synchronized 和 ReentrantLock 区别

synchronized 使用: 1:当一个线程访问object的一个synchronized(this)同步代码块时,它就获得了这个object的对象锁.结果,其它线程对该object对象所有同步代码部分的访问都被暂时阻塞. package com.threadtest; public class ThreadTest4 implements Runnable { public void run() { synchronized(this) {//多个线程执行这个代码块时,会被阻塞. for(

java的两种同步方式, Synchronized与ReentrantLock的区别

java在编写多线程程序时,为了保证线程安全,需要对数据同步,经常用到两种同步方式就是Synchronized和重入锁ReentrantLock. 相似点: 这两种同步方式有很多相似之处,它们都是加锁方式同步,而且都是阻塞式的同步,也就是说当如果一个线程获得了对象锁,进入了同步块,其他访问该同步块的线程都必须阻塞在同步块外面等待,而进行线程阻塞和唤醒的代价是比较高的(操作系统需要在用户态与内核态之间来回切换,代价很高,不过可以通过对锁优化进行改善). 区别: 这两种方式最大区别就是对于Synch

同步中的四种锁synchronized、ReentrantLock、ReadWriteLock、StampedLock

目录 1.synchronized同步锁 2.ReentrantLock重入锁 3.ReadWriteLock读写锁 4.StampedLock戳锁(目前没找到合适的名字,先这么叫吧...) 5.总结 =======正文分割线========== 为了更好的支持并发程序,JDK内部提供了多种锁.本文总结4种锁. 1.synchronized同步锁 使用: synchronized本质上就2种锁: 1.锁同步代码块 2.锁方法 可用object.wait() object.notify()来操作线