opencv利用svm训练

#根据身高体重训练  预测男生还是女生#1数据制作rand1 = np.array([[155,48],[159,50],[164,53],[168,56],[172,60]])rand2 = np.array([[152,53],[156,55],[160,56],[172,64],[176,65]])label = np.array([[0],[0],[0],[0],[0],[1],[1],[1],[1],[1]])data = np.vstack((rand1,rand2))data = np.array(data,dtype = ‘float32‘)print(data)#2训练svm = cv2.ml.SVM_create()#ml 机器学习模块#属性设置svm.setType(cv2.ml.SVM_C_SVC)svm.setKernel(cv2.ml.SVM_LINEAR)svm.setC(0.01)#训练result = svm.train(data,cv2.ml.ROW_SAMPLE,label)#预测pt_data = np.vstack([[167,55],[162,57]])pt_data = np.array(pt_data,dtype = ‘float32‘)print(pt_data)(par1,par2) = svm.predict(pt_data)print(par2)

原文地址:https://www.cnblogs.com/lzq116/p/11804139.html

时间: 2024-10-21 08:37:18

opencv利用svm训练的相关文章

Hu矩SVM训练及检测-----OpenCV

关键词:Hu矩,SVM,OpenCV 在图像中进行目标物识别,涉及到特定区域内是否存在目标物,SVM可在样本量较少情况下对正负样本(图片中前景背景)做出良好区分,图片基本特征包括诸如HOG.LBP.HAAR等,在具体进行物体检测时考虑结合待检测物特点利用或设计新特征进行训练并分类.本文以几何不变矩为例说明OpenCV中SVM分类器的一般使用过程,下面依次简述Hu矩函数.SVM参数设置及实例演示. 1.Hu求解 double M[7];//Hu矩输出 Moments mo; //矩变量 src=i

OpenCV的HOG+SVM训练程序注意事项

行人训练:http://www.tuicool.com/articles/MvYfui 字符识别:http://www.haogongju.net/art/2328003 用OpenCV使用HOG特征进行SVM算法训练的大概流程是 1)设置训练样本集 需要两组数据,一组是数据的类别,一组是数据的向量信息. 2)设置SVM参数,参考<机器模式->libSVM之参数说明> 注意必须使用线性SVM进行训练,因为检测函数只支持线性检测!!! 3)使用HOGDescriptor计算hog特征 4)

opencv使用svm

作者 群号 C语言交流中心 240137450  微信 15013593099 OpenCV开发SVM算法是基于LibSVM软件包开发的,LibSVM是台湾大学林智仁(LinChih-Jen)等开发设计的一个简单.易于使用和快速有效的SVM模式识别与回归的软件包.用OpenCV使用SVM算法的大概流程是 1)设置训练样本集 需要两组数据,一组是数据的类别,一组是数据的向量信息. 2)设置SVM参数 利用CvSVMParams类实现类内的成员变量svm_type表示SVM类型: CvSVM::C_

使用opencv的SVM和神经网络实现车牌识别

一.前言 本文参考自<深入理解Opencv 实用计算机视觉项目解析>中的自动车牌识别项目,并对其中的方法理解后,再进行实践.深刻认识到实际上要完成车牌区域准确定位.车牌区域中字符的准确分割,字符准确识别这一系列步骤的困难.所以最后的识别效果也是有待进一步提高. 二.程序流程 程序流程如下所示: 相应的main函数如下 #include "carID_Detection.h" int main() { Mat img_input = imread("testCarI

opencv的svm学习_1

概述 本篇是对opencv的svm学习笔记,基于对opencv官方svm教程的修改和记录.opencv的svm教程如下: 官网原版:http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html#introductiontosvms 汉语翻译版:http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/ml/introductio

OpenCV支持向量机(SVM)介绍

支持向量机(SVM)介绍 目标 本文档尝试解答如下问题: 如何使用OpenCV函数 CvSVM::train 训练一个SVM分类器, 以及用 CvSVM::predict 测试训练结果. 什么是支持向量机(SVM)? 支持向量机 (SVM) 是一个类分类器,正式的定义是一个能够将不同类样本在样本空间分隔的超平面. 换句话说,给定一些标记(label)好的训练样本 (监督式学习), SVM算法输出一个最优化的分隔超平面. 如何来界定一个超平面是不是最优的呢? 考虑如下问题: 假设给定一些分属于两类

正式使用opencv里的训练和检测 - opencv_createsamples、opencv_traincascade

好久没有来写blog了,学生生涯终结,就不好好总结了,今天把opencv里关于adaboost训练和检测的过程记录下来,方便别人也方便自己~~~啊哈哈~~~~ 一.基础知识准备 首先,opencv目前仅支持三种特征的训练检测, HAAR.LBP.HOG,选择哪个特征就去补充哪个吧.opencv的这个训练算法是基于adaboost而来的,所以需要先对adaboost进行基础知识补充啊,网上一大堆资料,同志们速度去查阅.我的资源里也有,大家去下载吧,这些我想都不是大家能直接拿来用的,我下面将直接手把

利用mnist训练集生成的caffemodel对mnist测试集与自己手写的数字进行测试

从一到二:利用mnist训练集生成的caffemodel对mnist测试集与自己手写的数字进行测试 通过从零到一的教程,我们已经得到了通过mnist训练集生成的caffemodel,主要包含下面四个文件: 接下来就可以利用模型进行测试了.关于测试方法按照上篇教程还是选择bat文件,当然python.matlab更为方便,比如可以迅速把识别错误的图片显示出来. 一.均值文件mean.binaryproto 在进行分类之前首先需要产生所有图片的平均值图片,真正分类时的每个图片都会先减去这张平均值图片

【OpenCV】opencv3.0中的SVM训练 mnist 手写字体识别

前言: SVM(支持向量机)一种训练分类器的学习方法 mnist 是一个手写字体图像数据库,训练样本有60000个,测试样本有10000个 LibSVM 一个常用的SVM框架 OpenCV3.0 中的ml包含了很多的ML框架接口,就试试了. 详细的OpenCV文档:http://docs.opencv.org/3.0-beta/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html mnist数据下载:http://yann.l