Magic boy Bi Luo with his excited tree
Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 723 Accepted Submission(s): 192
Problem Description
Bi Luo is a magic boy, he also has a migic tree, the tree has N nodes
, in each node , there is a treasure, it‘s value is V[i],
and for each edge, there is a cost C[i],
which means every time you pass the edge i ,
you need to pay C[i].
You may attention that every V[i] can
be taken only once, but for some C[i] ,
you may cost severial times.
Now, Bi Luo define ans[i] as
the most value can Bi Luo gets if Bi Luo starts at node i.
Bi Luo is also an excited boy, now he wants to know every ans[i],
can you help him?
Input
First line is a positive integer T(T≤104) ,
represents there are T test
cases.
Four each test:
The first line contain an integer N(N≤105).
The next line contains N integers V[i],
which means the treasure’s value of node i(1≤V[i]≤104).
For the next N?1 lines,
each contains three integers u,v,c ,
which means node u and
node v are
connected by an edge, it‘s cost is c(1≤c≤104).
You can assume that the sum of N will
not exceed 106.
Output
For the i-th test case , first output Case #i: in a single line , then output N lines
, for the i-th line , output ans[i] in
a single line.
Sample Input
1 5 4 1 7 7 7 1 2 6 1 3 1 2 4 8 3 5 2
Sample Output
Case #1: 15 10 14 9 15
Author
UESTC
Source
题意:说给一棵树,点和边都有权值,经过一点可以加上该点的权值但最多只加一次,经过边会减去该边权值,问从各个点分别出发最多能获得多少权值。
分析:两个DFS分别在O(n)处理出两种信息,各个结点往其为根的子树走的信息和各个结点往父亲走的信息,各个结点就能在O(1)合并这两个信息分别得出各个结点的最终信息。。
参考大神博客:http://www.cnblogs.com/WABoss/p/5771931.html
#pragma comment(linker, "/STACK:102400000,102400000") #include <iostream> #include <cstdio> #include <cstring> #include <stack> #include <queue> #include <map> #include <set> #include <vector> #include <cmath> #include <algorithm> using namespace std; const double eps = 1e-6; const double pi = acos(-1.0); const int INF = 1e9; const int MOD = 1e9+7; #define ll long long #define CL(a,b) memset(a,b,sizeof(a)) #define lson (i<<1) #define rson ((i<<1)|1) #define N 100010 int gcd(int a,int b){return b?gcd(b,a%b):a;} struct node { int v,c,next; }e[N<<1]; int tot,head[N]; void add(int u, int v, int c) { e[tot].v = v; e[tot].c = c; e[tot].next = head[u]; head[u] = tot++; } int val[N]; int d_down[2][N],d_up[2][N]; ///dp_down[0/1][u]:u结点往其为根的子树走,并且不走回来/走回来,能得到的最大权值 ///dp_up[0/1][u]:u结点往其父亲向上走,并且不走回来/走回来,能得到的最大权值 void dfs1(int u, int fa) { d_down[0][u] = d_down[1][u] = val[u]; for(int i=head[u]; i!=-1; i=e[i].next) { int v = e[i].v; if(v == fa) continue; dfs1(v, u); if(d_down[0][v]-2*e[i].c>0) d_down[0][u] += d_down[0][v]-2*e[i].c; } int mx = 0; for(int i=head[u]; i!=-1; i=e[i].next) { int v = e[i].v; if(v == fa) continue; if(d_down[0][v]-2*e[i].c>0) mx = max(mx, (d_down[1][v]-e[i].c)-(d_down[0][v]-2*e[i].c)); else mx = max(mx, d_down[1][v]-e[i].c); } d_down[1][u] = d_down[0][u] + mx; } void dfs2(int u, int fa) { int mx1=0,mx2=0,tmp; for(int i=head[u]; i!=-1; i=e[i].next) { int v = e[i].v; if(v == fa) continue; if(d_down[0][v]-2*e[i].c>0) tmp=(d_down[1][v]-e[i].c)-(d_down[0][v]-2*e[i].c); else tmp=d_down[1][v]-e[i].c; if(mx1<tmp) mx2=mx1, mx1=tmp; else if(mx2<tmp) mx2=tmp; } for(int i=head[u]; i!=-1; i=e[i].next) { int v = e[i].v; if(v == fa) continue; int tmp2; if(d_down[0][v]-2*e[i].c>0) tmp2=d_down[0][u]-(d_down[0][v]-2*e[i].c); else tmp2=d_down[0][u]; int mx=max(d_up[0][u]-2*e[i].c, tmp2-2*e[i].c); mx = max(mx, d_up[0][u]+tmp2-2*e[i].c-val[u]); d_up[0][v] = val[v]+max(0, mx); if(d_down[0][v]-2*e[i].c>0) { if(mx1==(d_down[1][v]-e[i].c)-(d_down[0][v]-2*e[i].c)) tmp = d_down[1][u]-(d_down[1][v]-e[i].c)+mx2; else tmp = d_down[1][u]-(d_down[0][v]-2*e[i].c); } else if(d_down[1][v]-e[i].c>0) { if(mx1==d_down[1][v]-e[i].c) tmp = d_down[1][u]-(d_down[1][v]-e[i].c)+mx2; else tmp = d_down[1][u]; } else tmp = d_down[1][u]; mx = max(d_up[1][u]-e[i].c, tmp-e[i].c); mx = max(mx, max(d_up[0][u]+tmp-e[i].c-val[u], d_up[1][u]+tmp2-e[i].c-val[u])); d_up[1][v] = val[v]+max(0, mx); dfs2(v, u); } } int main() { int T; scanf("%d",&T); for(int cas=1; cas<=T; cas++) { tot = 0; CL(head, -1); int n; scanf("%d",&n); for(int i=1; i<=n; i++) scanf("%d",val+i); int a,b,c; for(int i=1; i<n; i++) { scanf("%d%d%d",&a,&b,&c); add(a, b, c); add(b, a, c); } dfs1(1, 1); d_up[0][1] = d_up[1][1] = val[1]; dfs2(1, 1); printf("Case #%d:\n",cas); for(int i=1; i<=n; i++) { printf("%d\n",max(d_up[1][i]+d_down[0][i], d_up[0][i]+d_down[1][i])-val[i]); } } return 0; }