【BZOJ】【3671】【NOI2014】随机数生成器

贪心



  嗯……其实生成这个矩阵就是一个$O(n^2)$的模拟 = =

  然后?字典序最小?贪心呗= =能选1就选1,然后能选2就选2……

  我们发现,对于矩阵(1,1)~(n,m),假设1的位置是(x,y),那么我们选完1以后,可选的范围变成了:(1,1)~(x,y) & (x,y)~(n,m),也就是将一个矩阵拆成四块,我们可以在左上和右下两块中递归地进行选择……

  那么我们每次选完之后,新的可选的范围其实暴力O(n)维护就可以了,因为我们总共只选$O(n)$次,每次维护的复杂度是$O(n)$,总复杂度还是$O(n^2)$

  至于卡空间这个问题……由于开一个5000*5000的int就是100M,所以我一开始开了个T数组先算出来,然后再生成map[i][j],这样的做法是会爆的……(因为还存了个pos[i],保存 i 这个数的坐标,这个可以用short,需要100M)

  所以改进了一下:不生成T数组,直接在map上面搞,就可以了= =

 1 /**************************************************************
 2     Problem: 3671
 3     User: Tunix
 4     Language: C++
 5     Result: Accepted
 6     Time:29944 ms
 7     Memory:197448 kb
 8 ****************************************************************/
 9
10 //BZOJ 3671
11 #include<vector>
12 #include<cstdio>
13 #include<cstring>
14 #include<cstdlib>
15 #include<iostream>
16 #include<algorithm>
17 #define rep(i,n) for(int i=0;i<n;++i)
18 #define F(i,j,n) for(int i=j;i<=n;++i)
19 #define D(i,j,n) for(int i=j;i>=n;--i)
20 #define pb push_back
21 using namespace std;
22 inline int getint(){
23     int v=0,sign=1; char ch=getchar();
24     while(ch<‘0‘||ch>‘9‘){ if (ch==‘-‘) sign=-1; ch=getchar();}
25     while(ch>=‘0‘&&ch<=‘9‘){ v=v*10+ch-‘0‘; ch=getchar();}
26     return v*sign;
27 }
28 const int N=5010,INF=~0u>>2;
29 typedef long long LL;
30 /******************tamplate*********************/
31
32 int n,m,Q,mp[N][N],l[N],r[N];
33 int x0,a,b,c,d;
34 inline int ran(){return x0=((LL)x0*x0*a+(LL)x0*b+c)%d;}
35 typedef pair<short,short> pii;
36 #define mk make_pair
37 pii pos[N*N];
38 int ans[N+N],cnt;
39
40 int main(){
41 #ifndef ONLINE_JUDGE
42     freopen("3671.in","r",stdin);
43     freopen("3671.out","w",stdout);
44 #endif
45     x0=getint(),a=getint(),b=getint(),c=getint(),d=getint();
46     n=getint(); m=getint(); Q=getint();
47     F(i,1,n) F(j,1,m) mp[i][j]=(i-1)*m+j;
48     F(i,1,n*m){
49         int x1=i/m+1,y1=i%m,t=ran()%i+1,x2=t/m+1,y2=t%m;
50         if (!y1) x1--,y1=m;
51         if (!y2) x2--,y2=m;
52         swap(mp[x1][y1],mp[x2][y2]);
53     }
54     int x,y;
55     F(i,1,Q){
56         x=getint(),y=getint();
57         int x1=x/m+1,y1=x%m,x2=y/m+1,y2=y%m;
58         if (!y1) x1--,y1=m;
59         if (!y2) x2--,y2=m;
60         swap(mp[x1][y1],mp[x2][y2]);
61     }
62     F(i,1,n) F(j,1,m){
63         pos[mp[i][j]]=mk((short)i,(short)j);
64     }
65
66     F(i,1,n) l[i]=1,r[i]=m;
67     F(i,1,n*m){
68         if (cnt==n+m-1) break;
69         int x=pos[i].first,y=pos[i].second;
70 //      printf("pos[%d]=(%d,%d)\n",i,x,y);
71         if (l[x]<=y && r[x]>=y){
72             ans[++cnt]=i;
73             F(i,1,x-1) r[i]=min(y,r[i]);
74             F(i,x+1,n) l[i]=max(y,l[i]);
75         }
76 //      F(i,1,n) printf("l[%d]=%d r[%d]=%d\n",i,l[i],i,r[i]);
77 //      puts("");
78     }
79     F(i,1,cnt-1) printf("%d ",ans[i]);
80     printf("%d",ans[cnt]);
81     return 0;
82 }

3671: [Noi2014]随机数生成器

Time Limit: 50 Sec  Memory Limit: 256 MB
Submit: 774  Solved: 374
[Submit][Status][Discuss]

Description

Input


1行包含5个整数,依次为 x_0,a,b,c,d ,描述小H采用的随机数生成算法所需的随机种子。第2行包含三个整数 N,M,Q
,表示小H希望生成一个1到 N×M 的排列来填入她 N 行 M 列的棋盘,并且小H在初始的 N×M 次交换操作后,又进行了 Q
次额外的交换操作。接下来 Q 行,第 i 行包含两个整数 u_i,v_i,表示第 i 次额外交换操作将交换 T_(u_i )和 T_(v_i )
的值。

Output

输出一行,包含 N+M-1 个由空格隔开的正整数,表示可以得到的字典序最小的路径序列。

Sample Input

1 3 5 1 71
3 4 3
1 7
9 9
4 9

Sample Output

1 2 6 8 9 12

HINT

本题的空间限制是 256 MB,请务必保证提交的代码运行时所使用的总内存空间不超过此限制。

一个32位整数(例如C/C++中的int和Pascal中的Longint)为4字节,因而如果在程序中声明一个长度为 1024×1024 的32位整型变量的数组,将会占用 4 MB 的内存空间。

2≤N,M≤5000

0≤Q≤50000

0≤a≤300

0≤b,c≤108

0≤x0<d≤108

1≤ui,vi≤N×M

Source

[Submit][Status][Discuss]

时间: 2024-10-14 11:42:03

【BZOJ】【3671】【NOI2014】随机数生成器的相关文章

BZOJ 3671 NOI2014 随机数生成器 贪心+暴力

题目大意:.....有点长自己看吧 首先既然是排序后的序列字典序最小,那么一定要选尽量小的数字走 然后T是1~m*n的序列 所以不存在重复(一开始我居然把这个条件看漏了) 好的这题贪心 每次选择没有被标记的最小点,然后把左下方和右上方都标记掉(记得标记重复时break,不然就挂了) 注意5000*5000的数组开两个int就是极限了 开多了妥妥MLE 所以T数组记得重复利用 暴力跑了38秒 不过这题每一行能够选择的区域一定是连续的 可以对于每一行维护一个l和r 每次更新取最值即可 这个代码跑了2

NOI2014 随机数生成器.

3757. [NOI2014]随机数生成器 (Standard IO) Time Limits: 5000 ms  Memory Limits: 262144 KB Description Input 输入文件的第 1 行包含 5 个整数,依次为 x0, a, b, c, d,描述小 H 采用的随机数生成算法所需的随机种子. 第 2 行包含三个整数 N, M, Q,表示小 H 希望生成一个 1 到 N × M 的排列来填入她 N 行 M 列的棋盘,并且小 H 在初始的 N × M 次交换操作后,

【BZOJ3671】[Noi2014]随机数生成器 暴力

[BZOJ3535][Noi2014]随机数生成器 Description Input 第1行包含5个整数,依次为 x_0,a,b,c,d ,描述小H采用的随机数生成算法所需的随机种子.第2行包含三个整数 N,M,Q ,表示小H希望生成一个1到 N×M 的排列来填入她 N 行 M 列的棋盘,并且小H在初始的 N×M 次交换操作后,又进行了 Q 次额外的交换操作.接下来 Q 行,第 i 行包含两个整数 u_i,v_i,表示第 i 次额外交换操作将交换 T_(u_i )和 T_(v_i ) 的值.

BZOJ 2875: [Noi2012]随机数生成器( 矩阵快速幂 )

矩阵快速幂...+快速乘就OK了 -------------------------------------------------------------------------------------- #include<bits/stdc++.h> using namespace std; typedef long long ll; ll MOD, a, c, x, n, g; ll MUL(ll a, ll b) { ll ans = 0; for(; b; b >>= 1

bzoj3671 [Noi2014]随机数生成器

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3671 [题解] 贪心从1...n*m取,开两个5000*5000的数组就够了,可以重复利用,坐标可以压到一个int里. 每次暴力标记不能访问的,标到已经有标记的就不用标了因为后面的肯定前面已经标记过了. 均摊复杂度就对了.复杂度$O(nm)$. 这破题还卡PE.. # include <stdio.h> # include <string.h> # include <i

[bzoj 2875][noi2012]随机数生成器

传送门 Description 栋栋最近迷上了随机算法,而随机数是生成随机算法的基础.栋栋准备使用线性同余法(Linear Congruential Me thod)来生成一个随机数列,这种方法需要设置四个非负整数参数m,a,c,X[0],按照下面的公式生成出一系列随机 数X[n]X[n+1]=(aX[n]+c)mod m其中mod m表示前面的数除以m的余数.从这个式子可以看出,这个序列的下一个数 总是由上一个数生成的.用这种方法生成的序列具有随机序列的性质,因此这种方法被广泛地使用,包括常用

BZOJ 3122 SDOI2013 随机数生成器

一大堆边界一开始并不知道,胡乱判了几个之后一直WA 无奈之下只好去下载了数据,然后就疯狂判各种奇怪的边界了 刨去边界问题 首先我们考虑a=1的情况 x1+k*b=t(mod p) ex_gcd即可解 考虑a>1的情况 令S=X+b/(a-1) 原式就变成了一个等比数列 即S1*a^k=(t+b/(a-1))(mod p) 移项之后BSGS解即可 其他边界都可以O(1)判断 #include<cstdio> #include<cstring> #include<iostr

【bzoj3671】[Noi2014]随机数生成器 贪心

题目描述 输入 第1行包含5个整数,依次为 x_0,a,b,c,d ,描述小H采用的随机数生成算法所需的随机种子.第2行包含三个整数 N,M,Q ,表示小H希望生成一个1到 N×M 的排列来填入她 N 行 M 列的棋盘,并且小H在初始的 N×M 次交换操作后,又进行了 Q 次额外的交换操作.接下来 Q 行,第 i 行包含两个整数 u_i,v_i,表示第 i 次额外交换操作将交换 T_(u_i )和 T_(v_i ) 的值. 输出 输出一行,包含 N+M-1 个由空格隔开的正整数,表示可以得到的字

BZOJ 3122 [Sdoi2013]随机数生成器 BSGS

题意:链接 方法: BSGS 解析: 首先他给出了你数列在mod p意义下的递推式. 所以我们可以求出来通项. Xn+1+k=a?(Xn+k) 所以b=(a?1)?k 则我们可以解出来k 那么这个数列的通项是什么呢? Xn=an?1?(X1+k)?k 题中给定Xn 求出n就行了. 所以只需要移项就好了. 这里有个问题,此时我们的通项公式是不包含首项的,所以需要特判首项,另外还有第一项以外为常数项的时候. 代码: #include <cmath> #include <cstdio>

BZOJ 3122 SDOI2013 随机数生成器 数论 EXBSGS

题目大意:给定一个数列X(i+1)=(a*Xi+b)%p 求最小的i>0,使Xi=t 0.0 此题能1A真是太好了 首先讨论特殊情况 若X1=t ans=1 若a=0 ans=b==t?2:-1 若a=1 X1+b*(ans-1)==t (%p) 扩展欧几里得 令 temp=b/(a-1) 则有 (X(i+1)+temp)=a*(Xi+temp) Xans=(X1+temp)*a^(ans-1)-temp 其中Xans%p=t 则有 (X1+temp)*a^(ans-1)-temp == t (