Rstudio中如何获取R语言帮助

Rstudio中如何获取R语言帮助

R语言

《R语言实战》中介绍到,

最常用的是使用代码help("function_name")?function_name,以及help(package="package_name"),除此之外,还可以直接在Rstudio右下角的Help,搜索你想要查询的函数,

还可以通过右下角的Packages,安装R包和查阅每个包的介绍,

时间: 2024-12-14 22:47:05

Rstudio中如何获取R语言帮助的相关文章

R语言笔记之数据篇

R语言杂七杂八 与R语言有关的应用工具 探索性数据分析 统计推断 回归分析 机器学习-分类问题 R与Rstudio的获取与安装 包package一种扩展R基本功能的机制集成了众多函数 获取包 导入包libraryname 获取帮助 R语言特点 R语言语法基础之数据篇 R语言中的数据 R语言支持的数据类型 基本数据结构 一维数据类型 向量 vocter 1创建 2提取子集 因子 factor 1创建 2提取子集 二维数据类型 矩阵 matrix 1生成矩阵 1matrix方法 2 修改dim属性来

微软的R语言发行版本MRO及开发工具RTVS

(此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:微软在收购R语言的开发商后,也独立发行或在自己的产品中集成了R语言,这里就介绍下它们包括开发工具RTVS. R是世界上最强大的统计计算.机器学习和图形化语言/平台,同时伴有一个众多用户.开发者和贡献者的全球化社区.R在我之前从事的环境分析领域也被广泛使用,据朋友说一个从环境专业毕业的博士就因为R用得熟还成功进入Facebook成为数据科学家. 众所周知,微软去年初收购了R语言的开发商Revol

手把手教你学习R语言

本文为带大家了解R语言以及分段式的步骤教程! 人们学习R语言时普遍存在缺乏系统学习方法的问题.学习者不知道从哪开始,如何进行,选择什么学习资源.虽然网络上有许多不错的免费学习资源,然而它们多过了头,反而会让人挑花了眼. 为了构建R语言学习方法,我们在Vidhya和DataCamp中选一组综合资源,帮您从头学习R语言.这套学习方法对于数据科学或R语言的初学者会很有用;如果读者是R语言的老用户,则会由本文了解这门语言的部分最新成果. R语言学习方法会帮助您快速.高效学习R语言. 前言 在开始学习之前

R语言- 实验报告 - 数据清洗

一. 实训内容 能对基本的开发环境进行检验和错误排查,以及对新语言软件进行安装. 能使用Navicat for MySQL对MySQL数据库进行基本的连接测试,同时,在mysql中新建student数据库.能利用外部SQL脚本文件对数据库进行数据集的导入和初始化. 熟悉利用eclipse编程工具,新建项目和工具类对mysql数据库进行相应的操作,以及从该项目中导出可执行的jar文件. 利用R-3.6.1-win.exe运行,导出的可执行的jar文件.并编写一个“数据清洗.r”脚本文件,对C:\

大数据时代的精准数据挖掘——使用R语言

老师简介: Gino老师,即将步入不惑之年,早年获得名校数学与应用数学专业学士和统计学专业硕士,有海外学习和工作的经历,近二十年来一直进行着数据分析的理论和实践,数学.统计和计算机功底强悍. 曾在某一世界500强公司核心部门担任高级主管负责数据建模和分析工作,在实践中攻克统计建模和数据分析难题无数,数据处理与分析科学精准,在实际应用中取得良好的效果. Gino老师担任数据分析培训师多年,探索出一套以实例讲解带动统计原理理解和软件操作熟悉的方法,授课的学生能迅速理解统计原理并使用统计软件独立开展数

主成分分析(PCA)原理及R语言实现

原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及计算步骤 - 文库 主成分分析之R篇 [机器学习算法实现]主成分分析(PCA)——基于python+numpy scikit-learn中PCA的使用方法 Python 主成分分析PCA 机器学习实战-PCA主成分分析.降维(好) 关于主成分分析的五个问题 主成分分析(PCA)原理详解(推荐) 多变

R语言分析(一)-----基本语法

  一, R语言所处理的工作层: 解释一下: 最下面的一层为数据源,往上是数据仓库层,往上是数据探索层,包括统计分析,统计查询,还有就是报告 再往上的三层,分别是数据挖掘,数据展现和数据决策. 由上图可知,R语言是可以用于数据挖掘,数据展现,而后领导根据展现的数据来决策,R语言在数据展现的方面,拥有很强大的功能. 二,R语言的数据结构: 包括如下的几项:包括向量,矩阵,数组,数据框,列表和因子 1,向量: 创建向量的方法一共有三种,分别如下: 第一种,使用c()的这个方法: 由于博客中木有R语言

R 语言实现求导

前言 高等数学是每个大学生都要学习的一门数学基础课,同时也可能是考完试后最容易忘记的一门知识.我在学习高数的时候绞尽脑汁,但始终都不知道为何而学.生活和工作基本用不到,就算是在计算机行业和金融行业,能直接用到高数的地方也少之又少,学术和实际应用真是相差太远了. 不过,R语言为我打开了一道高数应用的大门,R语言不仅能方便地实现高等数学的计算,还可以很容易地把一篇论文中的高数公式应用于产品的实践中.因为R语言我重新学习了高数,让生活中充满数学,生活会变得更有意思. 本节并不是完整的高数计算手册,仅介

R语言的导数计算(转)

转自:http://blog.fens.me/r-math-derivative/ 前言 高等数学是每个大学生都要学习的一门数学基础课,同时也可能是考完试后最容易忘记的一门知识.我在学习高数的时候绞尽脑汁,但始终都不知道为何而学.生活和工作基本用不到,就算是在计算机行业和金融行业,能直接用到高数的地方也少之又少,学术和实际应用真是相差太远了. 不过,R语言为我打开了一道高数应用的大门,R语言不仅能方便地实现高等数学的计算,还可以很容易地把一篇论文中的高数公式应用于产品的实践中.因为R语言我重新学