逻辑回归损失函数为何取负数

这样y与^y, 差值最小,因此使用其作为损失函数。

参考: https://www.zhihu.com/question/272058718

原文地址:https://blog.51cto.com/12597095/2486137

时间: 2024-10-30 08:08:20

逻辑回归损失函数为何取负数的相关文章

逻辑回归损失函数3D图

在学习逻辑回归的过程中,通过3D图像可以直接观察损失函数的收敛速度,对自行确定学习速率提供参考 损失函数公式: Octave程序如下: tx = linspace(100,-30,1000); %θ和X看做一个共同参数ty = round(unifrnd(0,1,1,1000));% y的值仅仅为0或1,随机生成1000个m=length(tx);[xx, yy] = meshgrid (tx, ty);tz = -1 *( yy* log( sigmoid(xx) ) + (1 - yy )

逻辑回归损失函数(cost function)

逻辑回归模型预估的是样本属于某个分类的概率,其损失函数(Cost Function)可以像线型回归那样,以均方差来表示:也可以用对数.概率等方法.损失函数本质上是衡量”模型预估值“到“实际值”的距离,选取好的“距离”单位,可以让模型更加准确. 1. 均方差距离 \[{J_{sqrt}}\left( w \right) = {\sum\limits_{i = 1}^m {{y_i}\left( {1 - p\left( {{x_i};w} \right)} \right)} ^2} + \left

为什么逻辑回归损失函数不用均方损失/二元逻辑回归的损失函数适合采用对数损失函数

逻辑回归可以用于处理二元分类问题,将输出值控制在[0,1]区间内,为确保输出值时钟若在0到1之间,采用sigmoid函数,其具有该特性,将线性回归训练得到的模型输出数据作z = x1*w1+x2*w2+...+xn*wn+b代入得到y,保证了y在0~1之间 逻辑回归中用到sigmoid函数,若用均方误差则为非凸函数,有多个极小值,采用梯度下降法容易现如局部最优解中 因此在二元逻辑回归的损失函数一般采用对数损失函数 y'是x代入得到的预测值,介于0~1之间的: 若标签值为1,我们希望预测的结果也是

大白话5分钟带你走进人工智能-第十八节逻辑回归之交叉熵损失函数梯度求解过程(3)

                                               第十八节逻辑回归之交叉熵损失函数梯度求解过程(3) 上一节中,我们讲解了交叉熵损失函数的概念,目标是要找到使得损失函数最小的那组θ,也就是l(θ)最大,即预测出来的结果在训练集上全部正确的概率最大.那我们怎么样找到我们的最优解呢?上节中提出用梯度下降法求解,本节的话我们对其具体细节展开. 先来看下我们用梯度下降求解最优解,想要通过梯度下降优化L(θ)到最小值需要几步? 第一步,随机产生w,随机到0附近会

逻辑回归原理小结

逻辑回归是一个分类算法,它可以处理二元分类以及多元分类.虽然它名字里面有"回归"两个字,却不是一个回归算法.那为什么有"回归"这个误导性的词呢?个人认为,虽然逻辑回归是分类模型,但是它的原理里面却残留着回归模型的影子,本文对逻辑回归原理做一个总结. 1. 从线性回归到逻辑回归 我们知道,线性回归的模型是求出输出特征向量Y和输入样本矩阵X之间的线性关系系数\(\theta\),满足\(\mathbf{Y = X\theta}\).此时我们的Y是连续的,所以是回归模型.

线性回归和 逻辑回归 的思考(参考斯坦福 吴恩达的课程)

还是不习惯这种公式的编写,还是直接上word.... 对上面的(7)式取log后并最大化即可得到最小二乘法,即 argmaxθ J(θ) 思考二:线性回归到逻辑回归的转变: 1) 引入逻辑回归,假设用线性回归来做分类问题,设为二分类,即y取0或1. 则会出现如下的情况: 这种情况下是能很好的分类的,但若数据是如下所示呢: 则分类很不好. 思考三:逻辑回归损失函数的得来(解释):     答,也是通过最大似然得到的.y的取值为0,1:则认为这是一个伯努力的分布,也称为两点的分布,则公式表示如下:

逻辑回归基础梳理

1.逻辑回归 逻辑回归就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏. Logistic回归虽然名字里带"回归",但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别) 回归模型中,y是一个定性变量,比如y=0或1,logistic方法主要应用于研究某些事件发生的概率 2.预测函数 在逻辑回归中,我们一般取用Sigmoid函数,函数形式为:   对于线性边界的情况,边

大白话5分钟带你走进人工智能-第二十节逻辑回归和Softmax多分类问题(5)

                                                    大白话5分钟带你走进人工智能-第二十节逻辑回归和Softmax多分类问题(5) 上一节中,我们讲解了逻辑回归的优化,本节的话我们讲解逻辑回归做多分类问题以及传统的多分类问题,我们用什么手段解决. 先看一个场景,假如我们现在的数据集有3个类别,我们想通过逻辑回归建模给它区分出来.但我们知道逻辑回归本质上是区分二分类的算法模型.难道没有解决办法了吗?办法还是有的,既然想分出3类,我们姑且称这3个类

4.机器学习之逻辑回归算法

理论上讲线性回归模型既可以用于回归,也可以用于分类.解决回归问题,可以用于连续目标值的预测.但是针对分类问题,该方法则有点不适应,因为线性回归的输出值是不确定范围的,无法很好的一一对应到我们的若干分类中.即便是一个二分类,线性回归+阈值的方式,已经很难完成一个鲁棒性很好的分类器了.为了更好的实现分类,逻辑回归诞生了.逻辑回归(Logistic Regression)主要解决二分类问题,用来表示某件事情发生的可能性.逻辑回归是假设数据服从Bernoulli分布的,因此LR也属于参数模型,他的目的也