libgdx学习之Camera

Camera定义

游戏中,Camera用来向用户展示场景,Camera就像一个摄像机,摄像机里面的景象就是Camera的展示范围,如下图所示:

在3D空间中Camera被定义为一个位置,有一个单位“方向”向量和一个“向上”的单位向量组成,方向和向上向量告诉OpenGL 当前Camera如何定向。

视景体

Camera的另一个重要特性是视觉平截体(View Frustrum),在上面的图片中可以看到一个被砍去顶尖的角锥体,这就是一个视觉平截体,所以视觉平截体内部的东西都可以在屏幕上看到,视觉平截体被六个剖面确定,near、far、left、right、top、bottom。near剖面还有一个特殊的性质:你可以认为它是相机照出的照片中的平面。这个由3D转换为2D的过程,称为投影,通常有两种投影:orthographic projection(正交投影) 和 perspective projection(透视投影、中心投影),正交投影在2D的图形中经常使用,无论物体离camera远近,物体在屏幕上的大小始终一样。透视投影是现实世界中的成像原理:物体离眼睛越远,物体的就越小。不同的投射类型就是改变视景体的形状,透视投影的视觉平截体形状就是上图的角锥体形状,正交投影的视觉平截体是一个长方体,投影的过程简单来说:对于物体上的每一个点,计算这个点到camera之间的连线是否与near剖面相交。下图是正交投影与透视投影的图片示例:


 由此可以看出为什么在透视投影下,屏幕上越远的物体会越小,而正交投影下,物体保持大小不变。OpenGL一般使用3D空间展示,无论你是绘图还是输出字符串,当你使用正交投影时,可以假设z轴不存在,下图就是一个2D精灵在3D空间中的样子:

因此,在这里可以忽略2D和3D的不同之处,下图是一个在未设置任何矩阵(matrix)下使用SpriteBatch绘图的正交视景体


我们所做的就是让我们的精灵在x/y平面上移动,忽略z轴,保持我们一直工作在2D空间的假象

透视投影使用两个属性来定义它的投影规则:广角和纵横比(长宽比),广角是一个角度值,用来定义视场有多大”开口“,如下图

纵横比是视口的宽度和高度比。视口是一个长方形,即camera用来进行渲染图像的地方,一个480*320像素的窗口,它的纵横比是480/320。

Camera相关类

Camera:基础类

OrthographicCamera:正交Camera 继承自Camera

PerspectiveCamera:投影Camera继承在Camera

首先看Camera类

Java代码  

  1. public abstract class Camera {
  2. public final Vector3 position = new Vector3();
  3. public final Vector3 direction = new Vector3(0, 0, -1);
  4. public final Vector3 up = new Vector3(0, 1, 0);

三个公共成员分别是Camera的位置、方向、up向量 ,采用的是默认属性,因此camera默认位于原点,z轴默认朝上。

Java代码  

  1. public final Matrix4 projection = new Matrix4();
  2. public final Matrix4 view = new Matrix4();
  3. public final Matrix4 combined = new Matrix4();
  4. public final Matrix4 invProjectionView = new Matrix4();

这是一系列的在OpenGL ES 2.0中用到的矩阵,前两个是投影和模型视图矩阵,第三个是前两个的结合,第四个是第三个的翻转,经常用来做提取登时,这些都不会经常使用到

Java代码  

  1. public float near = 1;
  2. public float far = 100;
  3. public float viewportWidth = 0;
  4. public float viewportHeight = 0;

这是near和far剖面距离camera的距离,以及视口的宽度和高度,near和far必须遵循0<=near<far的公式。默认情况情况下near剖面距离camera是1个单位,对于正交投影,near经常设置为0,width和height用来计算透视投影的纵横比或者正交投影的视景体长方体

Java代码  

  1. public final Frustum frustum = new Frustum();

最后的成员是Frustum,有6个平面组成,Frustum可以用来进行裁剪:检测一个物体是否在Frustum内,如果不在则不绘制它。Frustum有一些的方法用来检测一个 盒子、球体或者一个点是否在Frustum中。

Java代码  

  1. public abstract void update();
  2. public void apply(GL10 gl);

这是两个常用方法,update方法用来重新计算camera的举证,当camera的属性发生改变时进行调用。apply方法用来设置camera的GL_PROJECTION或者GL_MODELVIEW矩阵,不过这个方法在OpenGL ES 2.0上不可用。

Java代码  

  1. public void unproject(Vector3 vec);
  2. public void project(Vector3 vec);
  3. public Ray getPickRay(float x, float y);

最后是几个你可能用到额高级方法。unproject方法用来从屏幕坐标中取得一个点,并产生这个点的三位坐标。与原有类的OrthographicCamera.screenToWorld()左右相同,也等同于gluUnproject方法。x、y坐标是可触坐标,参数中的z坐标是个0和1之间的值,0表示点位于near平面,1表示点位于far平面;

project方法正好相反,从3D世界中取得一个点,并转换成屏幕上的2d点;

getPickRay方法会返回一个直线,可以想象成3D世界中,从camera位置到x、y的一条直线,用来检测这个直线是否与其他图形或者物体接触到。

Java代码  

  1. public class OrthographicCamera extends Camera {
  2. public float zoom = 1;
  3. public OrthographicCamera(float viewportWidth, float viewportHeight);

OrthographicCamera有一个额外成员zoom用来定义缩放因子。构造参数定义了camera的视口width和高度,如果想要最佳的利用机器像素,只需要在这里定义GRaphics.getWidth()/getHeight(),也可以使用不同的单位,比如厘米。

Java代码  

  1. public class PerspectiveCamera extends Camera {
  2. public float fieldOfView = 67;
  3. public PerspectiveCamera(float fieldOfView, float viewportWidth, float viewportHeight);

PerspectiveCamera 也有一个额外的成员,广角。

文章翻译完,对Camera的理解又进了一层。

时间: 2024-11-12 19:36:27

libgdx学习之Camera的相关文章

libgdx学习记录17——照相机Camera

照相机在libgdx中的地位举足轻重,贯穿于整个游戏开发过程的始终.一般我们都通过Stage封装而间接使用Camera,同时我们也可以单独使用Camera以完成背景的移动.元素的放大.旋转等操作. Camera分为PerspectiveCamera(远景照相机)和OrthographicCamera(正交照相机). PerspectiveCamera为正常的照相机,当距离物体越远,则物体越小,一般在3D空间中使用. OrthographicCamera忽略了其Z轴,不管距离物体多远,其大小始终不

libgdx学习记录11——平铺地图TiledMap

地图对于游戏场景十分重要,很多游戏都需要对地图进行编辑,可使用TileMap进行编辑并生成对应的tmx格式地图文件. 编辑好后,可通过TmxMapLoader来读取地图文件.可通过一个正交相机OthographicCamera和正交地图渲染器OrthogonalTiledMapRenderer来进行显示. 实例如下: 1 package com.fxb.newtest; 2 3 import com.badlogic.gdx.ApplicationAdapter; 4 import com.ba

libgdx学习记录19——图片动态打包PixmapPacker

libgdx中,opengl 1.x要求图片长宽必须为2的整次幂,一般有如下解决方法 1. 将opengl 1.x改为opengl 2.0.(libgdx 1.0版本后不支持1.x,当然不存在这个问题,这里针对的是0.9.9版本) 2. 使用TexturePacker将图片打包好然后作成一张大图添加进来. 第二种方法是常用方法,但是不太灵活,添加.删除某些图片不太方便,改动较大.这里可以考虑使用PixmapPacker将图片进行动态打包. 主要方法: pack(String name, Pixm

Libgdx学习笔记: 游戏如何在androidx86 2.2的vbox虚拟机测试运行

这个问题我花了一天半的时间才解决,换了无数个libgdx的版本,0.98.0.99 1.0 还有最新未发布的版本都测试了,虚拟机的版本也换了很多个,都不行 最后总结出来. vBox虚拟机上的androidx86 无论哪个版本,至少我测试的2.2 4.0 4.1 都无法成功运行 libgdx 的opengl es2.0版本的程序 先说下我为什么一定要虚拟机,因为androidAVD带的模拟器不能多个模拟器进行socket交互,我说的是超过2个,只有2个可以端口映射,3个以上就没办法了,而现在我做的

libgdx学习记录23——图片移动选择

模拟移动选择图片,采用相机实现. 1 package com.fxb.newtest; 2 3 import com.badlogic.gdx.ApplicationAdapter; 4 import com.badlogic.gdx.Gdx; 5 import com.badlogic.gdx.graphics.Color; 6 import com.badlogic.gdx.graphics.GL10; 7 import com.badlogic.gdx.graphics.Texture;

libgdx学习记录16——资源加载器AssetManager

AssetManager用于对游戏中的资源进行加载.当游戏中资源(图片.背景音乐等)较大时,加载时会需要较长时间,可能会阻塞渲染线程,使用AssetManager可以解决此类问题. 主要优点: 1. 大多数资源加载器AssetLoader都是异步加载,可以避免阻塞渲染线程. 2. 通过引用计数来进行释放资源. 3. 通过一个对象来管理所有其他资源. 主要函数: load(path,type)加载某个路径的资源文件,后面type指定所要加载的资源类型.这个函数只是将资源文件加入到资源队列中,并不会

libgdx学习记录18——Box2d物理引擎

libgdx封装了Box2D物理引擎,通过这个引擎能够模拟物理现实,使设计出的游戏更具有真实感. libgdx中,Box2d程序的大概过程: 1. 创建物理世界world,并设置重力加速度. 2. 创建正交相机,并设置其宽高.Box2d中使用物理世界中米作为单位,而不是图像中的像素,通常设一个比值,这里为了方便,直接设置为10. 3. 创建世界中的动态物体(一般是方块.圆环或其他形状物体)和静态物体(主要指地面.墙壁等). 4. 在渲染函数中添加world时间布,并利用DebugRenderer

Libgdx学习笔记:Simple text input

官方Wiki:https://github.com/libgdx/libgdx/wiki/Simple-text-input 实现接口TextInputListener public class MyTextInputListener implements TextInputListener {       @Override    public void input (String text) {    }       @Override    public void canceled () 

libgdx学习记录21——Box2d物理引擎之碰撞Contact、冲量Impulse、关节Joint

Box2d中,物体可以接受力(Force).冲量(Impulse)和扭矩(Torque).这些物理元素都能改变物体的运动形式,并且默认都会唤醒物体,当然只是针对动态物体. 力是一个持久的效果,通过Box2d内置的积分器实现运动变化. 冲量是一个瞬时效果,能立马改变其效果. 主要函数: body.applyLinearImpulse( Vector2 impulse, Vector2 position, boolean wakeup ) 第一个参数表示冲量,包含x和y方向的大小. 第二个参数表示施