python数据结构与算法 33 希尔排序

希尔排序

希尔排序,有时称为递减增量排序,是在插入排序基础上,把列表拆成几个较小的子表,然后对每个子表使用插入排序的方法。选出子表的方法是希尔排序的关键,它并不是把列表的中相近的元素取出来组成子表,而是使用了一个增量值I,有时也叫做“间隙”,然后每隔一个间隙选中一个元素来组成子表。

这可以从图6中看出来,列表中有9个元素,如果我们使用增量3,就有3个子表,每个子表单独做插入排序。完成之后的列表如图7,现在看这个表虽然没有完全排序,但对子表排序后,元素已经很接近它们的最终位置。

图6 增量为3的希尔排序

图7 子表排序之后的希尔排序

图8所示为增量是1的插入排序,或者说,这就是个标准的插入排序。得益于前面的子表排序过程,现在需要移动操作要少得多。在这个例子中,只需要移动4次就完成了排序。

图8 希尔排序最后一步:增量为1的插入排序

图9  希尔排序 初始化子表

前面我们说过,希尔排序的独特性就是增量的选择,下面的函数使用了一个不同的增量的集合,从n/2个子表开始,下一步就是n/4个子表要排序,最终是1个子表进行插入排序。图9所示是这种增量的第一批4个子表。

下面的shellSort函数对每个增量值进行一次子表排序,最终使用插入排序完成

def shellSort(alist):
    sublistcount = len(alist)//2
    while sublistcount > 0:

      for startposition in range(sublistcount):
        gapInsertionSort(alist,startposition,sublistcount)

      print("After increments of size",sublistcount,
                                   "The list is",alist)

      sublistcount = sublistcount // 2

def gapInsertionSort(alist,start,gap):
    for i in range(start+gap,len(alist),gap):

        currentvalue = alist[i]
        position = i

        while position>=gap and alist[position-gap]>currentvalue:
            alist[position]=alist[position-gap]
            position = position-gap

        alist[position]=currentvalue

alist = [54,26,93,17,77,31,44,55,20]
shellSort(alist)
print(alist)

乍看起来,希尔排序不见得比插入排序更好,因为最后一步就完全是一个插入排序。但是,最后一步的插入排序,不需要很多步骤来完成比较和移动,因为通过前面的增量插入排序,列表已经做了“预排序”,也就是说,这个列表已经比普通列表“更有序”,所以在效率上有很大的不同。

对希尔排序的详细分析超出本书的范围,不过我们可以说,它趋向于O(n) 和 O(n2)
之间。对listing5中的增量,性能是O(n2),变更增量,例如使用 2k?1 (1,
3, 7,15, 31, 等),性能可达到O(n3/2).

时间: 2024-11-07 13:26:26

python数据结构与算法 33 希尔排序的相关文章

在路上---学习篇(一)Python 数据结构和算法 (4) --希尔排序、归并排序

独白: 希尔排序是经过优化的插入排序算法,之前所学的排序在空间上都是使用列表本身.而归并排序是利用增加新的空间,来换取时间复杂度的减少.这俩者理念完全不一样,注定造成的所消耗的时间不同以及空间上的不同. 归并排序涉及到递归的使用,需要理解其中精髓才能更好了解归并排序,以及其他应用到递归的算法.理解其本质才能更好的应用. 希尔排序 希尔排序(Shell Sort)是插入排序的一种.也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本.希尔排序是非稳定排序算法.该方法因DL.Shell于195

【数据结构与算法】希尔排序

希尔排序的时间复杂度是O(n^1.3)~O(n^2),空间复杂度是O(1). 代码如下: /** * 源码名称: ShellSort.java * 日期:2014-08-11 * 程序功能:希尔排序 * 版权:[email protected] * 作者:A2BGeek */ public class ShellSort { public void shellSort(int[] in) { int length = in.length; int span = length / 2; int i

研磨数据结构与算法-08希尔排序

希尔排序: /* * 希尔排序 */ public class ShellSort { /** * 排序方法 */ public static void sort(long[] arr) { //初始化一个间隔 int h = 1; //计算最大间隔 while(h < arr.length / 3) { h = h * 3 + 1; } while(h > 0) { //进行插入排序 long tmp = 0; for(int i = h; i < arr.length; i++) {

14-看图理解数据结构与算法系列(希尔排序)

希尔排序 希尔排序是希尔(Donald Shell)提出的一种排序方法,也属于插入排序,但是简单插入排序的高效版本,也称为缩小增量排序.基本思想是将待排序元素进行增量分组,然后在分组组内进行插入排序,随着增量的减少,每个分组组内的元素越来越多,直至增量减至1时,所有元素都分到同一个组内,执行插入排序后完成整个排序操作. 排序要点 选取一个小于所有待排序元素数量n的整数作为第一个增量,对全部元素进行分组,分组的依据是所有距离为的倍数的记录分到同一组. 对分好的组,在组内进行直接插入排序. 接着取第

五分钟学会一个高难度算法:希尔排序

前言 由于LeetCode上的算法题很多涉及到一些基础的数据结构,为了更好的理解后续更新的一些复杂题目的动画,推出一个新系列 ---<图解数据结构>,主要使用动画来描述常见的数据结构和算法.本系列包括十大排序.堆.队列.树.并查集.图等等大概几十篇. 希尔排序 希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本.但希尔排序是非稳定排序算法.希尔排序是基于插入排序的以下两点性质而提出改进方法的: 插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率: 但插入排序

排序算法之希尔排序

文章转载自http://www.cnblogs.com/chengxiao/ 希尔排序是希尔(Donald Shell)于1959年提出的一种排序算法.希尔排序也是一种插入排序,它是简单插入排序经过改进之后的一个更高效的版本,也称为缩小增量排序,同时该算法是冲破O(n2)的第一批算法之一.本文会以图解的方式详细介绍希尔排序的基本思想及其代码实现. 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序:随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组

python数据结构与算法 34 归并排序

归并排序 在提高排序算法性能的方法中,有一类叫做分而治之.我们先研究其中第一种叫做归并排序.归并排序使用递归的方法,不停地把列表一分为二.如果列表是空或只有一个元素,那么就是排好序的(递归基点),如果列表有超过1个的元素,那么切分列表并对两个子列表递归使用归并排序.一旦这两个列表排序完成,称为"归并"的基本操作开始执行.归并是把两个有序列表合并成一个新的有序列表的过程.图10是我们熟悉的列表样例分解过程,图11是归并的过程. 图10  切分过程 图11  归并过程 以下是mergeSo

python数据结构与算法 35 快速排序

快速排序 快速排序也使用了分而治之的策略来提高性能,而且不需要额外的内存,但是这么做的代价就是,列表不是对半切分的,因而,性能上就有所下降. 快速排序选择一个数值,一般称为"轴点",虽然有很多选取轴点的方法,我们还是简单地把列表中第一个元素做为轴点了.轴点的作用是帮助把列表分为两个部分.列表完成后,轴点所在的位置叫做"切分点",从这一点上把列表分成两部分供后续调用. 图12所示,54将作为轴点.这个例子我们已经排过多次了,我们知道54在排好序后将处于现在31的位置上

Python数据结构与算法--算法分析

在计算机科学中,算法分析(Analysis of algorithm)是分析执行一个给定算法需要消耗的计算资源数量(例如计算时间,存储器使用等)的过程.算法的效率或复杂度在理论上表示为一个函数.其定义域是输入数据的长度,值域通常是执行步骤数量(时间复杂度)或者存储器位置数量(空间复杂度).算法分析是计算复杂度理论的重要组成部分. 本文地址:http://www.cnblogs.com/archimedes/p/python-datastruct-algorithm-analysis.html,转