三种基于感知哈希算法的相似图像检索技术

大家都用google或baidu的识图功能,上面就是我搜索一幅图片的结果,该引擎实现相似图片搜素的关键技术叫做“感知哈希算法”(Perceptual hash algorithm),它的作用是对每张图片生成一个“指纹”(fingerprint)字符串,然后比较不同图片的指纹。结果越接近,就说明图片越相似。达到图片比较目的且利用信息指纹比较有三种算法,这些算法都很易懂,下面分别介绍一下:

1、基于低频的均值哈希

一张图片就是一个二维信号,它包含了不同频率的成分。如下图所示,亮度变化小的区域是低频成分,它描述大范围的信息。而亮度变化剧烈的区域(比如物体的边缘)就是高频的成分,它描述具体的细节。或者说高频可以提供图片详细的信息,而低频可以提供一个框架。

而一张大的,详细的图片有很高的频率,而小图片缺乏图像细节,所以都是低频的。所以我们平时的下采样,也就是缩小图片的过程,实际上是损失高频信息的过程。下面5张图依次是原图,放缩至64*64、32*32、16*16、8*8的图。

          

均值哈希算法主要是利用图片的低频信息,其工作过程如下:

(1)缩小尺寸:去除高频和细节的最快方法是缩小图片,将图片缩小到8x8的尺寸,总共64个像素。不要保持纵横比,只需将其变成8*8的正方形。这样就可以比较任意大小的图片,摒弃不同尺寸、比例带来的图片差异。

(2)简化色彩:将8*8的小图片转换成灰度图像。

(3)计算平均值:计算所有64个像素的灰度平均值。

(4)比较像素的灰度:将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1;小于平均值,记为0。

(5)计算hash值:将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。组合的次序并不重要,只要保证所有图片都采用同样次序就行了。(我设置的是从左到右,从上到下用二进制保存)。

计算一个图片的hash指纹的过程就是这么简单。刚开始的时候觉得这样就损失了图片的很多信息了,居然还能有效。简单的算法也许存在另一种美。如果图片放大或缩小,或改变纵横比,结果值也不会改变。增加或减少亮度或对比度,或改变颜色,对hash值都不会太大的影响。最大的优点:计算速度快!

这时候,比较两个图片的相似性,就是先计算这两张图片的hash指纹,也就是64位0或1值,然后计算不同位的个数(汉明距离)。如果这个值为0,则表示这两张图片非常相似,如果汉明距离小于5,则表示有些不同,但比较相近,如果汉明距离大于10则表明完全不同的图片。

2、增强版:pHash

均值哈希虽然简单,但受均值的影响非常大。例如对图像进行伽马校正或直方图均衡就会影响均值,从而影响最终的hash值。存在一个更健壮的算法叫pHash。它将均值的方法发挥到极致。使用离散余弦变换(DCT)来获取图片的低频成分。

离散余弦变换(DCT)是种图像压缩算法,它将图像从像素域变换到频率域。然后一般图像都存在很多冗余和相关性的,所以转换到频率域之后,只有很少的一部分频率分量的系数才不为0,大部分系数都为0(或者说接近于0)。下图的右图是对lena图进行离散余弦变换(DCT)得到的系数矩阵图。从左上角依次到右下角,频率越来越高,由图可以看到,左上角的值比较大,到右下角的值就很小很小了。换句话说,图像的能量几乎都集中在左上角这个地方的低频系数上面了。

pHash的工作过程如下:

(1)缩小尺寸:pHash以小图片开始,但图片大于8*8,32*32是最好的。这样做的目的是简化了DCT的计算,而不是减小频率。

(2)简化色彩:将图片转化成灰度图像,进一步简化计算量。

(3)计算DCT:计算图片的DCT变换,得到32*32的DCT系数矩阵。

(4)缩小DCT:虽然DCT的结果是32*32大小的矩阵,但我们只要保留左上角的8*8的矩阵,这部分呈现了图片中的最低频率。

(5)计算平均值:如同均值哈希一样,计算DCT的均值。

(6)计算hash值:这是最主要的一步,根据8*8的DCT矩阵,设置0或1的64位的hash值,大于等于DCT均值的设为”1”,小于DCT均值的设为“0”。组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。

结果并不能告诉我们真实性的低频率,只能粗略地告诉我们相对于平均值频率的相对比例。只要图片的整体结构保持不变,hash结果值就不变。能够避免伽马校正或颜色直方图被调整带来的影响。

与均值哈希一样,pHash同样可以用汉明距离来进行比较。(只需要比较每一位对应的位置并算计不同的位的个数)

三、差异哈希算法(dHash)

相比pHash,dHash的速度要快的多,相比aHash,dHash在效率几乎相同的情况下的效果要更好,它是基于渐变实现的。

步骤:

1.缩小图片:收缩到9*8的大小,一遍它有72的像素点

2.转化为灰度图:把缩放后的图片转化为256阶的灰度图。(具体算法见平均哈希算法步骤)

3.计算差异值:dHash算法工作在相邻像素之间,这样每行9个像素之间产生了8个不同的差异,一共8行,则产生了64个差异值

4.获得指纹:如果左边的像素比右边的更亮,则记录为1,否则为0.

需要说明的是这种指纹算法不仅可以应用于图片搜索,同样适用于其他多媒体形式。除此之外,图片搜索特征提取方法有很多,很多算法还有许多可以改进的地方,比如对于人物可以先进行人脸识别,再在面部区域进行局部的哈希,或者背景是纯色的可以先过滤剪裁等等,最后在搜索的结果中还可以根据颜色、风景、产品等进行过滤。

时间: 2024-11-05 17:32:48

三种基于感知哈希算法的相似图像检索技术的相关文章

Java进阶(五十七)-基于感知哈希算法的图像配准

Java进阶(五十七)-基于感知哈希算法的pHash图像配准算法 ??毕业论文提交之后,老师交给自己一项任务:图像配准,也就是给你两幅图像,通过系统来判定两幅图像是否为同一副图像.自己作为这一方面的小白,先去网上搜索一下相应的检测方法,当然有现成的API调用最好,花钱也无所谓. ??我们这里采用的基础关键技术叫做 "感知哈希算法"(Perceptual hash algorithm),它的作用是对每张图片生成一个"指纹"(fingerprint)字符串,然后比较不同

基于感知哈希算法的图像搜索实现

无意中看见一篇博客,是讲仿造google搜图的,链接如下: Google 以图搜图 - 相似图片搜索原理 - Java实现 觉得挺好玩的,博主使用Java实现的,于是我用 OpenCv实现了下. 根据看到的博文,里面说到,Google图像搜索的关键技术是"感知压缩算法"(Perceptual hash algorithm),它的作用是对每张图片生成一个"指纹"(fingerprint)字符串,然后比较不同图片的指纹.结果越接近,就说明图片越相似.看到这里我就突然来了

感知哈希算法

”感知哈希算法”(Perceptual hash algorithm),它的作用是对每张图片生成一个”指纹”(fingerprint)字符串,然后比较不同图片的指纹.结果越接近,就说明图片越相似. 优点:简单快速,不受图片大小缩放的影响. 缺点:图片的内容不能更改. 主要用途:根据缩略图找出原图,搜索引擎中的相似图片搜索. Hash算法原理 第一步,缩小尺寸. 将图片缩小到8×8的尺寸,总共64个像素.这一步的作用是去除图片的细节,只保留结构.明暗等基本信息,摒弃不同尺寸.比例带来的图片差异.

感知哈希算法的java实现

一.原理讲解      实现这种功能的关键技术叫做"感知哈希算法"(Perceptual Hash Algorithm), 意思是为图片生成一个指纹(字符串格式), 两张图片的指纹越相似, 说明两张图片就越相似. 但关键是如何根据图片计算出"指纹"呢? 下面用最简单的步骤来说明一下原理:            <1>.第一步 缩小图片尺寸      将图片缩小到8x8的尺寸, 总共64个像素. 这一步的作用是去除各种图片尺寸和图片比例的差异, 只保留结构

感知哈希算法&mdash;&mdash;找出相似的图片

Google 图片搜索功能         在谷歌图片搜索中, 用户可以上传一张图片, 谷歌显示因特网中与此图片相同或者相似的图片.         比如我上传一张照片试试效果: 原理讲解         参考Neal Krawetz博士的这篇文章, 实现这种功能的关键技术叫做"感知哈希算法"(Perceptual Hash Algorithm), 意思是为图片生成一个指纹(字符串格式), 两张图片的指纹越相似, 说明两张图片就越相似. 但关键是如何根据图片计算出"指纹&qu

感知哈希算法(找出相似的图片)

原理讲解 实现这种功能的关键技术叫做"感知哈希算法"(Perceptual Hash Algorithm), 意思是为图片生成一个指纹(字符串格式), 两张图片的指纹越相似, 说明两张图片就越相似. 但关键是如何根据图片计算出"指纹"呢? 下面用最简单的步骤来说明一下原理: 第一步 缩小图片尺寸 将图片缩小到8x8的尺寸, 总共64个像素. 这一步的作用是去除各种图片尺寸和图片比例的差异, 只保留结构.明暗等基本信息. 第二步 转为灰度图片 将缩小后的图片, 转为6

容器间通信的三种方式 - 每天5分钟玩转 Docker 容器技术(35)

容器之间可通过 IP,Docker DNS Server 或 joined 容器三种方式通信. IP 通信 从上一节的例子可以得出这样一个结论:两个容器要能通信,必须要有属于同一个网络的网卡. 满足这个条件后,容器就可以通过 IP 交互了.具体做法是在容器创建时通过 --network 指定相应的网络,或者通过 docker network connect 将现有容器加入到指定网络.可参考上一节 httpd 和 busybox 的例子,这里不再赘述. Docker DNS Server 通过 I

三、基于交换的排序算法(冒泡排序和快速排序)

1.冒泡排序 基本思想:若从小到大排序,从头开始,两两比较,大的放在后面,将待排序元素从左到右比较一遍成为“一次冒泡”,每次冒泡都将待排序数列中最大的关键字交换到最后,直到所有元素有序为止. 算法复杂度:O(2^n) 改进方法:可能排序几次后,数列已经有序,但是还没有进行完n次循环.可以在交换的代码段中设置一个标志位,如果该标志位改变说明有交换(还未有序),否则用break退出循环. //1.冒泡排序 //注意数组下标溢出 void Bubble(int *array, int n) { int

相似图片搜索的三种哈希算法

想必大家都用google或baidu的识图功能,上面就是我搜索冠希哥一幅图片的结果,达到图片比较目的且利用信息指纹比较有三种算法,这些算法都很易懂,下面分别介绍一下: 一.平均哈希算法(aHash) 此算法是基于比较灰度图每个像素与平均值来实现的,最适用于缩略图,放大图搜索. 步骤: 1.缩放图片:为了保留结构去掉细节,去除大小.横纵比的差异,把图片统一缩放到8*8,共64个像素的图片. 2.转化为灰度图:把缩放后的图片转化为256阶的灰度图. 附上灰度图相关算法(R = red, G = gr