[转]独立成分分析(Independent Component Analysis)

原文地址:http://www.cnblogs.com/jerrylead/archive/2011/04/19/2021071.html

独立成分分析(Independent Component Analysis)

1. 问题:

1、上节提到的PCA是一种数据降维的方法,但是只对符合高斯分布的样本点比较有效,那么对于其他分布的样本,有没有主元分解的方法呢?

2、经典的鸡尾酒宴会问题(cocktail party problem)。假设在party中有n个人,他们可以同时说话,我们也在房间中一些角落里共放置了n个声音接收器(Microphone)用来记录声音。宴会过后,我们从n个麦克风中得到了一组数据,i表示采样的时间顺序,也就是说共得到了m组采样,每一组采样都是n维的。我们的目标是单单从这m组采样数据中分辨出每个人说话的信号。

将第二个问题细化一下,有n个信号源,每一维都是一个人的声音信号,每个人发出的声音信号独立。A是一个未知的混合矩阵(mixing matrix),用来组合叠加信号s,那么

x的意义在上文解释过,这里的x不是一个向量,是一个矩阵。其中每个列向量是

表示成图就是

这张图来自

http://amouraux.webnode.com/research-interests/research-interests-erp-analysis/blind-source-separation-bss-of-erps-using-independent-component-analysis-ica/

的每个分量都由的分量线性表示。A和s都是未知的,x是已知的,我们要想办法根据x来推出s。这个过程也称作为盲信号分离。

,那么

将W表示成

其中,其实就是将写成行向量形式。那么得到:

2. ICA的不确定性(ICA ambiguities)

由于w和s都不确定,那么在没有先验知识的情况下,无法同时确定这两个相关参数。比如上面的公式s=wx。当w扩大两倍时,s只需要同时扩大两倍即可,等式仍然满足,因此无法得到唯一的s。同时如果将人的编号打乱,变成另外一个顺序,如上图的蓝色节点的编号变为3,2,1,那么只需要调换A的列向量顺序即可,因此也无法单独确定s。这两种情况称为原信号不确定。

还有一种ICA不适用的情况,那就是信号不能是高斯分布的。假设只有两个人发出的声音信号符合多值正态分布,,I是2*2的单位矩阵,s的概率密度函数就不用说了吧,以均值0为中心,投影面是椭圆的山峰状(参见多值高斯分布)。因为,因此,x也是高斯分布的,均值为0,协方差为

令R是正交阵。如果将A替换成A’。那么。s分布没变,因此x’仍然是均值为0,协方差

因此,不管混合矩阵是A还是A’,x的分布情况是一样的,那么就无法确定混合矩阵,也就无法确定原信号。

3. 密度函数和线性变换

在讨论ICA具体算法之前,我们先来回顾一下概率和线性代数里的知识。

假设我们的随机变量s有概率密度函数(连续值是概率密度函数,离散值是概率)。为了简单,我们再假设s是实数,还有一个随机变量x=As,A和x都是实数。令是x的概率密度,那么怎么求

,首先将式子变换成,然后得到,求解完毕。可惜这种方法是错误的。比如s符合均匀分布的话(),那么s的概率密度是,现在令A=2,即x=2s,也就是说x在[0,2]上均匀分布,可知。然而,前面的推导会得到。正确的公式应该是

推导方法

更一般地,如果s是向量,A可逆的方阵,那么上式子仍然成立。

4. ICA算法

ICA算法归功于Bell和Sejnowski,这里使用最大似然估计来解释算法,原始的论文中使用的是一个复杂的方法Infomax principal。

我们假定每个有概率密度,那么给定时刻原信号的联合分布就是

这个公式代表一个假设前提:每个人发出的声音信号各自独立。有了p(s),我们可以求得p(x)

左边是每个采样信号x(n维向量)的概率,右边是每个原信号概率的乘积的|W|倍。

前面提到过,如果没有先验知识,我们无法求得W和s。因此我们需要知道,我们打算选取一个概率密度函数赋给s,但是我们不能选取高斯分布的密度函数。在概率论里我们知道密度函数p(x)由累计分布函数(cdf)F(x)求导得到。F(x)要满足两个性质是:单调递增和在[0,1]。我们发现sigmoid函数很适合,定义域负无穷到正无穷,值域0到1,缓慢递增。我们假定s的累积分布函数符合sigmoid函数

求导后

这就是s的密度函数。这里s是实数。

如果我们预先知道s的分布函数,那就不用假设了,但是在缺失的情况下,sigmoid函数能够在大多数问题上取得不错的效果。由于上式中是个对称函数,因此E[s]=0(s的均值为0),那么E[x]=E[As]=0,x的均值也是0。

知道了,就剩下W了。给定采样后的训练样本,样本对数似然估计如下:

使用前面得到的x的概率密度函数,得

大括号里面是

接下来就是对W求导了,这里牵涉一个问题是对行列式|W|进行求导的方法,属于矩阵微积分。这里先给出结果,在文章最后再给出推导公式。

最终得到的求导后公式如下,的导数为(可以自己验证):

其中是梯度上升速率,人为指定。

当迭代求出W后,便可得到来还原出原始信号。

注意:我们计算最大似然估计时,假设了之间是独立的,然而对于语音信号或者其他具有时间连续依赖特性(比如温度)上,这个假设不能成立。但是在数据足够多时,假设独立对效果影响不大,同时如果事先打乱样例,并运行随机梯度上升算法,那么能够加快收敛速度。

回顾一下鸡尾酒宴会问题,s是人发出的信号,是连续值,不同时间点的s不同,每个人发出的信号之间独立(之间独立)。s的累计概率分布函数是sigmoid函数,但是所有人发出声音信号都符合这个分布。A(W的逆阵)代表了s相对于x的位置变化,x是s和A变化后的结果。

5. 实例

s=2时的原始信号

观察到的x信号

使用ICA还原后的s信号

6. 行列式的梯度

对行列式求导,设矩阵A是n×n的,我们知道行列式与代数余子式有关,

是去掉第i行第j列后的余子式,那么对求导得

adj(A)跟我们线性代数中学的是一个意思,因此

时间: 2024-08-23 12:26:44

[转]独立成分分析(Independent Component Analysis)的相关文章

【转载】独立成分分析(Independent Component Analysis)ICA

独立成分分析(Independent Component Analysis) 1. 问题: 1.上节提到的PCA是一种数据降维的方法,但是只对符合高斯分布的样本点比较有效,那么对于其他分布的样本,有没有主元分解的方法呢? 2.经典的鸡尾酒宴会问题(cocktail party problem).假设在party中有n个人,他们可以同时说话,我们也在房间中一些角落里共放置了n个声音接收器(Microphone)用来记录声音.宴会过后,我们从n个麦克风中得到了一组数据,i表示采样的时间顺序,也就是说

独立成分分析(Independent Component Analysis)

ICA是一种用于在统计数据中寻找隐藏的因素或者成分的方法.ICA是一种广泛用于盲缘分离的(BBS)方法,用于揭示随机变量或者信号中隐藏的信息.ICA被用于从混合信号中提取独立的信号信息.ICA在20世纪80年代提出来,但是知道90年代中后期才开始逐渐流行起来. ICA的起源可以来源于一个鸡尾酒会问题,我们假设三个观测点x1,x2,x3,放在房间里同时检测三个人说话,另三个人的原始信号为s1,s2,s3,则求解的过程可以如下图所示: 定义 假设n个随机变量x1,x2,-.xn,由n个随机变量s1,

斯坦福ML公开课笔记15—隐含语义索引、神秘值分解、独立成分分析

斯坦福ML公开课笔记15 我们在上一篇笔记中讲到了PCA(主成分分析). PCA是一种直接的降维方法.通过求解特征值与特征向量,并选取特征值较大的一些特征向量来达到降维的效果. 本文继续PCA的话题,包含PCA的一个应用--LSI(Latent Semantic Indexing, 隐含语义索引)和PCA的一个实现--SVD(Singular Value Decomposition,神秘值分解). 在SVD和LSI结束之后.关于PCA的内容就告一段落. 视频的后半段開始讲无监督学习的一种--IC

机器学习 —— 基础整理(四):特征提取之线性方法——主成分分析PCA、独立成分分析ICA、线性判别分析LDA

本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensionality) 维数灾难就是说当样本的维数增加时,若要保持与低维情形下相同的样本密度,所需要的样本数指数型增长.从下面的图可以直观体会一下.当维度很大样本数量少时,无法通过它们学习到有价值的知识:所以需要降维,一方面在损失的信息量可以接受的情况下获得数据的低维表示,增加样本的密度:另一方面也可以达到去噪

斯坦福ML公开课笔记15—隐含语义索引、奇异值分解、独立成分分析

斯坦福ML公开课笔记15 我们在上一篇笔记中讲到了PCA(主成分分析).PCA是一种直接的降维方法,通过求解特征值与特征向量,并选取特征值较大的一些特征向量来达到降维的效果. 本文继续PCA的话题,包括PCA的一个应用--LSI(Latent Semantic Indexing, 隐含语义索引)和PCA的一个实现--SVD(Singular Value Decomposition,奇异值分解).在SVD和LSI结束之后,关于PCA的内容就告一段落.视频的后半段开始讲无监督学习的一种--ICA(I

独立成分分析 ICA 原理及公式推导 示例

独立成分分析(Independent component analysis) 前言 独立成分分析ICA是一个在多领域被应用的基础算法.ICA是一个不定问题,没有确定解,所以存在各种不同先验假定下的求解算法.相比其他技术,ICA的开源代码不是很多,且存在黑魔法–有些步骤并没有在论文里提到,但没有这些步骤是无法得到正确结果的. 本文给出一个ICA最大似然解法的推导,以及FastICA的python实现,限于时间和实际需求,没有对黑魔法部分完全解读,只保证FastICA实现能得到正确结果. 有兴趣的童

ICA (独立成分分析)

介绍 独立成分分析(ICA,Independent Component Correlation Algorithm)简介 X=AS X为n维观测信号矢量,S为独立的m(m<=n)维未知源信号矢量,矩阵A被称为混合矩阵. ICA的目的就是寻找解混矩阵W(A的逆矩阵),然后对X进行线性变换,得到输出向量U. U=WX=WAS 过程 编辑 (1)对输入数据进行中心化和白化预处理 X*=X-u 经过白化变换后的样本数据为 Z=Wz X* (2)从白化样本中求解出解混矩阵W 通过优化目标函数的方法得到W

机器学习笔记—独立成分分析

本文介绍独立成分分析(ICA),同 PCA 类似,我们是要找到一个新的基来表示数据,但目的就不一样了. 鸡尾酒会问题:n 个人在一个 party 上同时说话,n 个麦克风放置在房间的不同位置,因为每个麦克风跟每个人的距离都不一样,所以它们记录的说话者重叠的声音也不一样.根据麦克风记录的声音,如何分离出 n 个说话者的声音呢? 为形式化这个问题,我们想象有一些数据 s∈R 是从 n 个独立的源生成的,我们观察到的是 x=As, 矩阵 A 是未知的,被称作混合矩阵,通过不断观察得到的是 {x(i);

Independent Components Analysis:独立成分分析

1. 引言 与 PCA 类似,Independent Components Analysis(ICA)同样是要找到一组新基去表示数据.但是目标大不相同. 为了阐述动机,举一个例子,考虑“鸡尾酒会问题”. 在酒会上,有 n 个演讲者同时讲话,房间里面的每一个麦克风都会记录所有演讲者声音混合起来的音频,但是由于每一个麦克风距离每一个演讲者的距离都不一样,所以没一个麦克风记录的混合音频是不一样的,那么用这些麦克风录下来的混合音频数据,我们能否将每一个演讲者的声音都区分出来呢? 为了方便讨论,假设某个数