网络时间同步

从NTP服务器获取时间同步客户端:

 1 import java.io.IOException;
 2 import java.io.InterruptedIOException;
 3 import java.net.ConnectException;
 4 import java.net.DatagramPacket;
 5 import java.net.DatagramSocket;
 6 import java.net.InetAddress;
 7 import java.net.NoRouteToHostException;
 8 import java.net.UnknownHostException;
 9
10 public class TestNtp{
11
12     public static void main(String[] args){
13         int retry = 2;
14         int port = 123;
15         int timeout = 3000;
16
17         // get the address and NTP address request
18         //
19         InetAddress ipv4Addr = null;
20         try {
21             ipv4Addr = InetAddress.getByName("203.117.180.36");//更多NTP时间服务器参考附注
22                } catch (UnknownHostException e1) {
23             e1.printStackTrace();
24         }
25
26         int serviceStatus = -1;
27         DatagramSocket socket = null;
28         long responseTime = -1;
29         try {
30             socket = new DatagramSocket();
31             socket.setSoTimeout(timeout); // will force the
32             // InterruptedIOException
33
34             for (int attempts = 0; attempts <= retry && serviceStatus != 1; attempts++) {
35                 try {
36                     // Send NTP request
37                     //
38                     byte[] data = new NtpMessage().toByteArray();
39                     DatagramPacket outgoing = new DatagramPacket(data, data.length, ipv4Addr, port);
40                     long sentTime = System.currentTimeMillis();
41                     socket.send(outgoing);
42
43                     // Get NTP Response
44                     //
45                     // byte[] buffer = new byte[512];
46                     DatagramPacket incoming = new DatagramPacket(data, data.length);
47                     socket.receive(incoming);
48                     responseTime = System.currentTimeMillis() - sentTime;
49                     double destinationTimestamp = (System.currentTimeMillis() / 1000.0) + 2208988800.0;
50                     //这里要加2208988800,是因为获得到的时间是格林尼治时间,所以要变成东八区的时间,否则会与与北京时间有8小时的时差
51
52                     // Validate NTP Response
53                     // IOException thrown if packet does not decode as expected.
54                     NtpMessage msg = new NtpMessage(incoming.getData());
55                     double localClockOffset = ((msg.receiveTimestamp - msg.originateTimestamp) + (msg.transmitTimestamp - destinationTimestamp)) / 2;
56
57                     System.out.println("poll: valid NTP request received the local clock offset is " + localClockOffset + ", responseTime= " + responseTime + "ms");
58                     System.out.println("poll: NTP message : " + msg.toString());
59                     serviceStatus = 1;
60                 } catch (InterruptedIOException ex) {
61                     // Ignore, no response received.
62                 }
63             }
64         } catch (NoRouteToHostException e) {
65             System.out.println("No route to host exception for address: " + ipv4Addr);
66         } catch (ConnectException e) {
67             // Connection refused. Continue to retry.
68             e.fillInStackTrace();
69             System.out.println("Connection exception for address: " + ipv4Addr);
70         } catch (IOException ex) {
71             ex.fillInStackTrace();
72             System.out.println("IOException while polling address: " + ipv4Addr);
73         } finally {
74             if (socket != null)
75                 socket.close();
76         }
77
78         // Store response time if available
79         //
80         if (serviceStatus == 1) {
81             System.out.println("responsetime=="+responseTime);
82         }
83
84
85     }
86 }

协议解析模型

  1 import java.text.DecimalFormat;
  2 import java.text.SimpleDateFormat;
  3 import java.util.Date;
  4
  5 public class NtpMessage {
  6     /** *//**
  7      * This is a two-bit code warning of an impending leap second to be
  8      * inserted/deleted in the last minute of the current day. It‘‘s values may
  9      * be as follows:
 10      *
 11      * Value Meaning ----- ------- 0 no warning 1 last minute has 61 seconds 2
 12      * last minute has 59 seconds) 3 alarm condition (clock not synchronized)
 13      */
 14     public byte leapIndicator = 0;
 15
 16     /** *//**
 17      * This value indicates the NTP/SNTP version number. The version number is 3
 18      * for Version 3 (IPv4 only) and 4 for Version 4 (IPv4, IPv6 and OSI). If
 19      * necessary to distinguish between IPv4, IPv6 and OSI, the encapsulating
 20      * context must be inspected.
 21      */
 22     public byte version = 3;
 23
 24     /** *//**
 25      * This value indicates the mode, with values defined as follows:
 26      *
 27      * Mode Meaning ---- ------- 0 reserved 1 symmetric active 2 symmetric
 28      * passive 3 client 4 server 5 broadcast 6 reserved for NTP control message
 29      * 7 reserved for private use
 30      *
 31      * In unicast and anycast modes, the client sets this field to 3 (client) in
 32      * the request and the server sets it to 4 (server) in the reply. In
 33      * multicast mode, the server sets this field to 5 (broadcast).
 34      */
 35     public byte mode = 0;
 36
 37     /** *//**
 38      * This value indicates the stratum level of the local clock, with values
 39      * defined as follows:
 40      *
 41      * Stratum Meaning ---------------------------------------------- 0
 42      * unspecified or unavailable 1 primary reference (e.g., radio clock) 2-15
 43      * secondary reference (via NTP or SNTP) 16-255 reserved
 44      */
 45     public short stratum = 0;
 46
 47     /** *//**
 48      * This value indicates the maximum interval between successive messages, in
 49      * seconds to the nearest power of two. The values that can appear in this
 50      * field presently range from 4 (16 s) to 14 (16284 s); however, most
 51      * applications use only the sub-range 6 (64 s) to 10 (1024 s).
 52      */
 53     public byte pollInterval = 0;
 54
 55     /** *//**
 56      * This value indicates the precision of the local clock, in seconds to the
 57      * nearest power of two. The values that normally appear in this field
 58      * range from -6 for mains-frequency clocks to -20 for microsecond clocks
 59      * found in some workstations.
 60      */
 61     public byte precision = 0;
 62
 63     /** *//**
 64      * This value indicates the total roundtrip delay to the primary reference
 65      * source, in seconds. Note that this variable can take on both positive and
 66      * negative values, depending on the relative time and frequency offsets.
 67      * The values that normally appear in this field range from negative values
 68      * of a few milliseconds to positive values of several hundred milliseconds.
 69      */
 70     public double rootDelay = 0;
 71
 72     /** *//**
 73      * This value indicates the nominal error relative to the primary reference
 74      * source, in seconds. The values that normally appear in this field range
 75      * from 0 to several hundred milliseconds.
 76      */
 77     public double rootDispersion = 0;
 78
 79     /** *//**
 80      * This is a 4-byte array identifying the particular reference source. In
 81      * the case of NTP Version 3 or Version 4 stratum-0 (unspecified) or
 82      * stratum-1 (primary) servers, this is a four-character ASCII string, left
 83      * justified and zero padded to 32 bits. In NTP Version 3 secondary servers,
 84      * this is the 32-bit IPv4 address of the reference source. In NTP Version 4
 85      * secondary servers, this is the low order 32 bits of the latest transmit
 86      * timestamp of the reference source. NTP primary (stratum 1) servers should
 87      * set this field to a code identifying the external reference source
 88      * according to the following list. If the external reference is one of
 89      * those listed, the associated code should be used. Codes for sources not
 90      * listed can be contrived as appropriate.
 91      *
 92      * Code External Reference Source ---- ------------------------- LOCL
 93      * uncalibrated local clock used as a primary reference for a subnet without
 94      * external means of synchronization PPS atomic clock or other
 95      * pulse-per-second source individually calibrated to national standards
 96      * ACTS NIST dialup modem service USNO USNO modem service PTB PTB (Germany)
 97      * modem service TDF Allouis (France) Radio 164 kHz DCF Mainflingen
 98      * (Germany) Radio 77.5 kHz MSF Rugby (UK) Radio 60 kHz WWV Ft. Collins (US)
 99      * Radio 2.5, 5, 10, 15, 20 MHz WWVB Boulder (US) Radio 60 kHz WWVH Kaui
100      * Hawaii (US) Radio 2.5, 5, 10, 15 MHz CHU Ottawa (Canada) Radio 3330,
101      * 7335, 14670 kHz LORC LORAN-C radionavigation system OMEG OMEGA
102      * radionavigation system GPS Global Positioning Service GOES Geostationary
103      * Orbit Environment Satellite
104      */
105     public byte[] referenceIdentifier = { 0, 0, 0, 0 };
106
107     /** *//**
108      * This is the time at which the local clock was last set or corrected, in
109      * seconds since 00:00 1-Jan-1900.
110      */
111     public double referenceTimestamp = 0;
112
113     /** *//**
114      * This is the time at which the request departed the client for the server,
115      * in seconds since 00:00 1-Jan-1900.
116      */
117     public double originateTimestamp = 0;
118
119     /** *//**
120      * This is the time at which the request arrived at the server, in seconds
121      * since 00:00 1-Jan-1900.
122      */
123     public double receiveTimestamp = 0;
124
125     /** *//**
126      * This is the time at which the reply departed the server for the client,
127      * in seconds since 00:00 1-Jan-1900.
128      */
129     public double transmitTimestamp = 0;
130
131     /** *//**
132      * Constructs a new NtpMessage from an array of bytes.
133      */
134     public NtpMessage(byte[] array) {
135         // See the packet format diagram in RFC 2030 for details
136         leapIndicator = (byte) ((array[0] >> 6) & 0x3);
137         version = (byte) ((array[0] >> 3) & 0x7);
138         mode = (byte) (array[0] & 0x7);
139         stratum = unsignedByteToShort(array[1]);
140         pollInterval = array[2];
141         precision = array[3];
142
143         rootDelay = (array[4] * 256.0) + unsignedByteToShort(array[5]) + (unsignedByteToShort(array[6]) / 256.0) + (unsignedByteToShort(array[7]) / 65536.0);
144
145         rootDispersion = (unsignedByteToShort(array[8]) * 256.0) + unsignedByteToShort(array[9]) + (unsignedByteToShort(array[10]) / 256.0) + (unsignedByteToShort(array[11]) / 65536.0);
146
147         referenceIdentifier[0] = array[12];
148         referenceIdentifier[1] = array[13];
149         referenceIdentifier[2] = array[14];
150         referenceIdentifier[3] = array[15];
151
152         referenceTimestamp = decodeTimestamp(array, 16);
153         originateTimestamp = decodeTimestamp(array, 24);
154         receiveTimestamp = decodeTimestamp(array, 32);
155         transmitTimestamp = decodeTimestamp(array, 40);
156     }
157
158     /** *//**
159      * Constructs a new NtpMessage
160      */
161     public NtpMessage(byte leapIndicator, byte version, byte mode, short stratum, byte pollInterval, byte precision, double rootDelay, double rootDispersion, byte[] referenceIdentifier, double referenceTimestamp, double originateTimestamp, double receiveTimestamp, double transmitTimestamp) {
162         // ToDo: Validity checking
163         this.leapIndicator = leapIndicator;
164         this.version = version;
165         this.mode = mode;
166         this.stratum = stratum;
167         this.pollInterval = pollInterval;
168         this.precision = precision;
169         this.rootDelay = rootDelay;
170         this.rootDispersion = rootDispersion;
171         this.referenceIdentifier = referenceIdentifier;
172         this.referenceTimestamp = referenceTimestamp;
173         this.originateTimestamp = originateTimestamp;
174         this.receiveTimestamp = receiveTimestamp;
175         this.transmitTimestamp = transmitTimestamp;
176     }
177
178     /** *//**
179      * Constructs a new NtpMessage in client -> server mode, and sets the
180      * transmit timestamp to the current time.
181      */
182     public NtpMessage() {
183         // Note that all the other member variables are already set with
184         // appropriate default values.
185         this.mode = 3;
186         this.transmitTimestamp = (System.currentTimeMillis() / 1000.0) + 2208988800.0;
187     }
188
189     /** *//**
190      * This method constructs the data bytes of a raw NTP packet.
191      */
192     public byte[] toByteArray() {
193         // All bytes are automatically set to 0
194         byte[] p = new byte[48];
195
196         p[0] = (byte) (leapIndicator << 6 | version << 3 | mode);
197         p[1] = (byte) stratum;
198         p[2] = (byte) pollInterval;
199         p[3] = (byte) precision;
200
201         // root delay is a signed 16.16-bit FP, in Java an int is 32-bits
202         int l = (int) (rootDelay * 65536.0);
203         p[4] = (byte) ((l >> 24) & 0xFF);
204         p[5] = (byte) ((l >> 16) & 0xFF);
205         p[6] = (byte) ((l >> 8) & 0xFF);
206         p[7] = (byte) (l & 0xFF);
207
208         // root dispersion is an unsigned 16.16-bit FP, in Java there are no
209         // unsigned primitive types, so we use a long which is 64-bits
210         long ul = (long) (rootDispersion * 65536.0);
211         p[8] = (byte) ((ul >> 24) & 0xFF);
212         p[9] = (byte) ((ul >> 16) & 0xFF);
213         p[10] = (byte) ((ul >> 8) & 0xFF);
214         p[11] = (byte) (ul & 0xFF);
215
216         p[12] = referenceIdentifier[0];
217         p[13] = referenceIdentifier[1];
218         p[14] = referenceIdentifier[2];
219         p[15] = referenceIdentifier[3];
220
221         encodeTimestamp(p, 16, referenceTimestamp);
222         encodeTimestamp(p, 24, originateTimestamp);
223         encodeTimestamp(p, 32, receiveTimestamp);
224         encodeTimestamp(p, 40, transmitTimestamp);
225
226         return p;
227     }
228
229     /** *//**
230      * Returns a string representation of a NtpMessage
231      */
232     public String toString() {
233         String precisionStr = new DecimalFormat("0.#E0").format(Math.pow(2, precision));
234         return "Leap indicator: " + leapIndicator + " " + "Version: " + version + " " + "Mode: " + mode + " " + "Stratum: " + stratum + " " + "Poll: " + pollInterval + " " + "Precision: " + precision + " (" + precisionStr + " seconds) " + "Root delay: " + new DecimalFormat("0.00").format(rootDelay * 1000) + " ms " + "Root dispersion: " + new DecimalFormat("0.00").format(rootDispersion * 1000) + " ms " + "Reference identifier: " + referenceIdentifierToString(referenceIdentifier, stratum, version) + " " + "Reference timestamp: " + timestampToString(referenceTimestamp) + " " + "Originate timestamp: " + timestampToString(originateTimestamp) + " " + "Receive timestamp:   " + timestampToString(receiveTimestamp) + " " + "Transmit timestamp: " + timestampToString(transmitTimestamp);
235     }
236
237     /** *//**
238      * Converts an unsigned byte to a short. By default, Java assumes that a
239      * byte is signed.
240      */
241     public static short unsignedByteToShort(byte b) {
242         if ((b & 0x80) == 0x80)
243             return (short) (128 + (b & 0x7f));
244         else
245             return (short) b;
246     }
247
248     /** *//**
249      * Will read 8 bytes of a message beginning at <code>pointer</code> and
250      * return it as a double, according to the NTP 64-bit timestamp format.
251      */
252     public static double decodeTimestamp(byte[] array, int pointer) {
253         double r = 0.0;
254
255         for (int i = 0; i < 8; i++) {
256             r += unsignedByteToShort(array[pointer + i]) * Math.pow(2, (3 - i) * 8);
257         }
258
259         return r;
260     }
261
262     /** *//**
263      * Encodes a timestamp in the specified position in the message
264      */
265     public static void encodeTimestamp(byte[] array, int pointer, double timestamp) {
266         // Converts a double into a 64-bit fixed point
267         for (int i = 0; i < 8; i++) {
268             // 2^24, 2^16, 2^8, .. 2^-32
269             double base = Math.pow(2, (3 - i) * 8);
270
271             // Capture byte value
272             array[pointer + i] = (byte) (timestamp / base);
273
274             // Subtract captured value from remaining total
275             timestamp = timestamp - (double) (unsignedByteToShort(array[pointer + i]) * base);
276         }
277
278         // From RFC 2030: It is advisable to fill the non-significant
279         // low order bits of the timestamp with a random, unbiased
280         // bitstring, both to avoid systematic roundoff errors and as
281         // a means of loop detection and replay detection.
282         array[7] = (byte) (Math.random() * 255.0);
283     }
284
285     /** *//**
286      * Returns a timestamp (number of seconds since 00:00 1-Jan-1900) as a
287      * formatted date/time string.
288      */
289     public static String timestampToString(double timestamp) {
290         if (timestamp == 0)
291             return "0";
292
293         // timestamp is relative to 1900, utc is used by Java and is relative
294         // to 1970
295         double utc = timestamp - (2208988800.0);
296
297         // milliseconds
298         long ms = (long) (utc * 1000.0);
299
300         // date/time
301         String date = new SimpleDateFormat("dd-MMM-yyyy HH:mm:ss").format(new Date(ms));
302
303         // fraction
304         double fraction = timestamp - ((long) timestamp);
305         String fractionSting = new DecimalFormat(".000000").format(fraction);
306
307         return date + fractionSting;
308     }
309
310     /** *//**
311      * Returns a string representation of a reference identifier according to
312      * the rules set out in RFC 2030.
313      */
314     public static String referenceIdentifierToString(byte[] ref, short stratum, byte version) {
315         // From the RFC 2030:
316         // In the case of NTP Version 3 or Version 4 stratum-0 (unspecified)
317         // or stratum-1 (primary) servers, this is a four-character ASCII
318         // string, left justified and zero padded to 32 bits.
319         if (stratum == 0 || stratum == 1) {
320             return new String(ref);
321         }
322
323         // In NTP Version 3 secondary servers, this is the 32-bit IPv4
324         // address of the reference source.
325         else if (version == 3) {
326             return unsignedByteToShort(ref[0]) + "." + unsignedByteToShort(ref[1]) + "." + unsignedByteToShort(ref[2]) + "." + unsignedByteToShort(ref[3]);
327         }
328
329         // In NTP Version 4 secondary servers, this is the low order 32 bits
330         // of the latest transmit timestamp of the reference source.
331         else if (version == 4) {
332             return "" + ((unsignedByteToShort(ref[0]) / 256.0) + (unsignedByteToShort(ref[1]) / 65536.0) + (unsignedByteToShort(ref[2]) / 16777216.0) + (unsignedByteToShort(ref[3]) / 4294967296.0));
333         }
334
335         return "";
336     }
337 }

结果:

poll: valid NTP request received the local clock offset is 3606.92320227623, responseTime= 265ms
poll: NTP message : Leap indicator: 0 Version: 3 Mode: 4 Stratum: 1 Poll: 0 Precision: -18 (3.8E-6 seconds) Root delay: 0.00 ms Root dispersion: 0.00 ms Reference identifier: ACTS Reference timestamp: 26-三月-2009 20:50:23.508540 Originate timestamp: 26-三月-2009 19:51:10.031000 Receive timestamp:   26-三月-2009 20:51:17.086693 Transmit timestamp: 26-三月-2009 20:51:17.086712
responsetime==265

注意看红色部分,这是本地时间,我故意将本地时间调慢了一小时。

附注1:中国大概能用的NTP时间服务器
     server 133.100.11.8 prefer 
     server 210.72.145.44 
     server 203.117.180.36 //程序中所用的
     server 131.107.1.10 
     server time.asia.apple.com 
     server 64.236.96.53 
     server 130.149.17.21 
     server 66.92.68.246 
     server www.freebsd.org 
     server 18.145.0.30 
     server clock.via.net 
     server 137.92.140.80 
     server 133.100.9.2 
     server 128.118.46.3 
     server ntp.nasa.gov 
     server 129.7.1.66 
     server ntp-sop.inria.frserver 210.72.145.44(国家授时中心服务器IP地址) 
     ntpdate 131.107.1.10 
     ntpdate -s time.asia.apple.com

附注2:NTP概念简介

  Network Time Protocol(NTP)是用来使计算机时间同步化的一种协议,它可以使计算机对其服务器或时钟源(如石英钟,GPS等等)做同步化,它可以提供高精准度的时间校正(LAN上与标准间差小于1毫秒,WAN上几十毫秒),且可介由加密确认的方式来防止恶毒的协议攻击。

时间: 2024-10-30 16:30:06

网络时间同步的相关文章

android命令行网络时间同步

一.简介 Android基于Linux平台的开源手机操作系统. 二.原理 既然是Linux,那就应该支持linux的各种命令行,高度的可配置,但实验发现Android是Google的一个高度阉割版的linux,很多命令都不支持,如rdate命令(网络同步时间命令).既然不支持,那我使他支持不就完了. 三.BusyBox BusyBox 是标准 Linux 工具的一个单个可执行实现.BusyBox 包含了一些简单的工具,例如 cat 和 echo,还包含了一些更大.更复杂的工具,例如 grep.f

Linux 修正时间并与网络时间同步

1, linux系统时钟有两个,一个是硬件时钟,即BIOS时间,就是我们进行CMOS设置时看到的时间,另一个是系统时钟,是linux系统Kernel时间.当Linux启动时,系统Kernel会去读取硬件时钟的设置,然后系统时钟就会独立于硬件运作.有时我们会发现系统时钟和硬件时钟不一致,因此需要执行时间同步. 2,修改硬件时钟查看硬件时钟命令:hwclock --show设置硬件时间:hwclock --set --date="09/18/18 10:35:25" (月/日/年 时:分:

centos7设置系统时间与网络时间同步

Linux的时间分为System Clock(系统时间)和Real Time Clock (硬件时间,简称RTC). 系统时间:指当前Linux Kernel中的时间. 硬件时间:主板上有电池供电的时间. 查看系统时间的命令: #date 设置系统时间的命令: #date –set(月/日/年 时:分:秒) 例:#date –set "10/11/10 10:15" 查看硬件时间的命令: # hwclock 设置硬件时间的命令: # hwclock –set –date = (月/日/

2-4-搭建DHCP服务实现动态分配IP地址-NTP网络时间同步

本节所讲内容: ?DHCP服务器工作原理 ?使用DHCP为局域网中的机器分配IP地址 ?使用DHCP为服务器分配固定IP地址 ?ntpdate加计划任务同步服务器时间 -------------------------------------------------------- 扩展:查看默认的服务监听端口 cat /etc/services #所有服务默认端口都保存在这个文件中 cat /etc/services | grep ssh route -n #查看路由表信息 [[email pr

GPS时间同步服务器在网络摄像机配置应用

安徽京准电子科技开发的GPS校时同步服务器产品 网络摄像机相比于模拟摄像机的功能多增加了数字化压缩控制器和基于WEB管理界面的操作系统和内部时钟系统(可自行走时.也可获取外部时间作为基准),使得拍摄到的视频经处理后,通过有线网或者无线网送至终端用户显示出来或者存储.网络摄像机则需要北斗校时服务器来提供标准的时间,而用户可在PC终端或者是手机终端使用标准的客户端软件实现实时监控目标现场的情况,并可对图像及视频资料进行实时编辑和存储,同时还可以控制摄像机的云台和镜头,进行全方位地监控. 视频监控系统

ntpd (linux时间同步)

开发板使用ntpdate 进行网络时间同步 用法 ntpdate  ip    出现如下错误 ntpdate -u ip Error resolving ai_socktype: Servname not supported for ai_socktype (-8) 1 Jan 01:44:12 ntpdate[742]: Can't find host ai_socktype: Servname not supported for ai_socktype (-8) 1 Jan 01:44:12

Linux中系统时间同步ntpdate简介

Linux服务器运行久时,系统时间就会存在一定的误差,一般情况下可以使用date命令进行时间设置,但在做数据库集群分片等操作时对多台机器的时间差是有要求的,此时就需要使用ntpdate进行时间同步.所以同步操作有两种方法:一.date命令:date :查看当前时间,结果如下:Tue Mar 4 01:36:45 CST 2014date -s 09:38:40 :设置当前时间,结果如下:Tue Mar 4 09:38:40 CST 2014 二.ntpdate命令:ntpdate -u 210.

Android 时间更新机制之网络更新时间

转载请注明出处:http://blog.csdn.net/droyon/article/details/45701257 综述:Android网络时间更新,大体分两类.1.moderm相关更新,2.网络更新.本次主要介绍网路更新时间,主要涉及到NetworkTimeUpdateService,该类运行在SystemServer(ActivityManagerService)进程中.它有点特殊,从名字来看,其实Service,其实它和WifiService.ConnectivityManagerS

传感器网络的应用层技术

传感器节点功能的根本目的是感知.探测与传感,传感器节点和在传感器网络的通信与组网技术合起来就构成了一个完整的传感器网络.但是针对具体的应用来说,还需要有应用层的基础性技术来支撑传感器网络完成任务,主要包括时间同步技术.定位技术.数据融合技术.能量管理技术. 1.时间同步技术 首先我们要清楚为什么需要时间同步技术.举个例子,比如要测试小车的速度,可以设置2个传感器在公路上,根据这2个传感器的距离与小车经过这2个传感器的时间差可以计算出小车的速度.这个地方距离是固定的,误差主要体现在时间差,也就是说