POJ 1637 Sightseeing tour 混合图欧拉回路存在性判断

没有想到网络流还能解决这一类问题,完全想不到@[email protected]

一开始把所有的无向边制定任意方向有当做有向边看,然后统计每个点的入度和出度。以前有向图的欧拉回路判定是每个点的入读都等于出度,这样可以保证可以回到起点,现在在一些边可以调换方向的情况下,所有定点的入度和出度之差必定为偶数,因为调换任意一条边的方向都会使两个定点的入度和出度变化2,所以要构成一个欧拉回路所有点的入度和出度之差都为偶数,并设差为deg。

现在问题转化成了能否通过改变一些边的方向来是的所有点的入度出度都为0,因为有向边的方向已经确定,不用理会,把他们全部都删去。剩下的边中如果有出度大于入度的,肯定要调换-deg/2条边来使其变成0,建立源点到这些点的边,容量为-deg/2,同理,有出入大于入度的,就建立这些点到汇点的边,容量同样为deg/2。其他的边容量都为1,然后做一遍最大流,如果流量和需要调换的边数相等,即源点出去的边全部都满载,就有欧拉回路存在,否则不存在欧拉回路。

为什么这样子是成立的,我的想法是这样的,除了连接源点和汇点的边之外,其他的边的容量都为1,1的流量对应的就是一条边,源点连接到一个点的时候的容量为t,如果满载相当于这个点出发的t条边满载,相当于调换了t条边,但是这样子会影响后面的边的度,不过因为流会一直流到汇点,中途所有的满载的边都是要调换的,所以中间原本度为0的点的度其实到最后不会改变。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <string>
#include <iostream>
#include <map>
#include <cstdlib>
#include <list>
#include <set>
#include <queue>
#include <stack>

using namespace std;

typedef long long LL;
const int maxn = 205;
const int INF = INT_MAX / 3;

struct Edge {
    int u,v,cap;
    Edge(int u,int v,int cap):u(u),v(v),cap(cap) {}
};

int n,m,incnt[maxn],outcnt[maxn];
int deg[maxn],s,t;
vector<Edge> edges;
vector<int> e[maxn];

void adde(int u,int v,int w) {
    int m = edges.size();
    edges.push_back(Edge(u,v,w));
    edges.push_back(Edge(v,u,0));
    e[u].push_back(m);
    e[v].push_back(m ^ 1);
}

int level[maxn],q[maxn * 2],qs,qe;
bool bfs() {
    //建立层次网络
    memset(level,0,sizeof(level));
    level[s] = 1;
    qs = qe = 0;
    q[qe++] = s;
    while(qs < qe) {
        int now = q[qs++],nm = e[now].size();
        if(now == t) break;
        for(int i = 0;i < nm;i++) {
            Edge &ne = edges[e[now][i]];
            if(ne.cap && level[ne.v] == 0) {
                level[ne.v] = level[now] + 1;
                q[qe++] = ne.v;
            }
        }
    }
    return level[t];
}

int dfs(int now,int alpha) {
    if(now == t) return alpha;
    int sum = 0,nm = e[now].size();
    for(int i = 0;i < nm;i++) {
        Edge &ne = edges[e[now][i]];
        if(level[now] + 1 == level[ne.v] && ne.cap && alpha) {
            int ret = dfs(ne.v,min(alpha,ne.cap));
            ne.cap -= ret; edges[e[now][i] ^ 1].cap += ret;
            sum += ret; alpha -= ret;
        }
    }
    if(sum == 0) level[now] = -1;
    return sum;
}

void dinic() {
    while(bfs()) dfs(s,INF);
}

bool solve() {
    s = 0; t = n + 1;
    //判断入度出度之差是否为偶数
    for(int i = 1;i <= n;i++) {
        deg[i] = incnt[i] - outcnt[i];
        if(deg[i] & 1) return false;
    }
    //建立容量网络
    for(int i = 1;i <= n;i++) {
        //如果入度小于出度,建立从起点到这个点的边,容量为deg/2
        if(deg[i] < 0) adde(s,i,-deg[i] / 2);
        //如果出度大于入读,建立从当前点到汇点的边,容量同样为deg/2
        if(deg[i] > 0) adde(i,t,deg[i] / 2);
    }
    //计算最大流
    dinic();
    //判断从源点出发的所有边是否满流
    int m = e[s].size();
    for(int i = 0;i < m;i++) {
        if(edges[e[s][i]].cap != 0) return false;
    }
    return true;
}

int main() {
    int T; scanf("%d",&T);
    while(T--) {
        scanf("%d%d",&n,&m);
        edges.clear();
        for(int i = 0;i <= n + 1;i++) e[i].clear();
        memset(incnt,0,sizeof(incnt));
        memset(outcnt,0,sizeof(outcnt));
        for(int i = 1;i <= m;i++) {
            int u,v,c; scanf("%d%d%d",&u,&v,&c);
            //先将无向边全部作为有向边处理
            incnt[v]++; outcnt[u]++;
            //无向边存起来
            if(c == 0) adde(u,v,1);
        }
        if(solve()) puts("possible");
        else puts("impossible");
    }
    return 0;
}

  

POJ 1637 Sightseeing tour 混合图欧拉回路存在性判断

时间: 2025-01-04 05:55:34

POJ 1637 Sightseeing tour 混合图欧拉回路存在性判断的相关文章

POJ 1637 Sightseeing tour (混合图欧拉回路,网络最大流)

http://poj.org/problem?id=1637 Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7498   Accepted: 3123 Description The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that tourists can

POJ 1637 Sightseeing tour 混合图欧拉回路 最大流

题目大意:给出一张混合图,问是否存在欧拉回路. 思路:成题,直接看题解吧. http://www.cnblogs.com/Lyush/archive/2013/05/01/3052847.html CODE: #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define MAX 510 #define M

POJ 1637 Sightseeing tour (混合图欧拉回路)

Sightseeing tour Description The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that tourists can see every corner of the beautiful city. They want to construct the tour so that every street in the city is visit

POJ 1637 Sightseeing tour(混合图的欧拉回路)

题目链接 建个图,套个模板. #include <cstdio> #include <cstring> #include <iostream> #include <map> #include <algorithm> #include <vector> #include <string> #include <queue> using namespace std; #define INF 0x3ffffff str

POJ1637 Sightseeing tour (混合图欧拉回路)(网络流)

Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9100   Accepted: 3830 Description The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that tourists can see every corner of the beauti

poj 1637 Sightseeing tour —— 最大流+欧拉回路

题目:http://poj.org/problem?id=1637 建图很妙: 先给无向边随便定向,这样会有一些点的入度不等于出度: 如果入度和出度的差值不是偶数,也就是说这个点的总度数是奇数,那么一定无解: 随便定向后,如果定向 x -> y,那么从 y 向 x 连一条容量为1的边,将来选了这条边,表示重新定向成 y -> x 了: 考虑如果选了这条边,那么 x 的出度-1,入度+1,变化量是2: 所以对于每个点,如果入度>出度,从源点向它连容量为 (入度-出度)/2 的边,因为刚才改

poj1637 Sightseeing tour 混合图欧拉回路判定

传送门 第一次做这种题, 尽管ac了但是完全不知道为什么这么做. 题目就是给一些边, 有向边与无向边混合, 问你是否存在欧拉回路. 做法是先对每个点求入度和出度, 如果一条边是无向边, 就随便指定一个方向, 然后连一条边, 权值为1. 最后统计入度出度, 如果一个点的(入度-出度)%2==1, 就说明不存在欧拉回路. 如果全都满足, 就判断每个点的入度出度的大小关系, 入度>出度, 就向汇点连一条边, 权值为(入度-出度)/2, 相反的话就向源点连边. 跑一遍最大流, 看是否满流, 如果满流就说

POJ 1637 Sightseeing tour (混合图欧拉回路)

POJ 1637 Sightseeing tour 链接:http://poj.org/problem?id=1637 题意:给定一个混合图,既有有向边,又有无向边,问是否存在欧拉回路. 思路: 1 定义 欧拉通路 (Euler tour)--通过图中每条边一次且仅一次,并且过每一顶点的通路. 欧拉回路 (Euler circuit)--通过图中每条边一次且仅一次,并且过每一顶点的回路. 欧拉图--存在欧拉回路的图. 2 无向图是否具有欧拉通路或回路的判定 G有欧拉通路的充分必要条件为:G 连通

POJ 1637 Sightseeing tour(最大流)

POJ 1637 Sightseeing tour 题目链接 题意:给一些有向边一些无向边,问能否把无向边定向之后确定一个欧拉回路 思路:这题的模型很的巧妙,转一个http://blog.csdn.net/pi9nc/article/details/12223693 先把有向边随意定向了,然后依据每一个点的入度出度之差,能够确定每一个点须要调整的次数,然后中间就是须要调整的边,容量为1,这样去建图最后推断从源点出发的边是否都满流就可以 代码: #include <cstdio> #includ