REPEATS - Repeats
no tags
A string s is called an (k,l)-repeat if s is obtained by concatenating k>=1 times some seed string t with length l>=1. For example, the string
s = abaabaabaaba
is a (4,3)-repeat with t = aba as its seed string. That is, the seed string t is 3 characters long, and the whole string s is obtained by repeating t 4 times.
Write a program for the following task: Your program is given a long string u consisting of characters ‘a’ and/or ‘b’ as input. Your program must find some (k,l)-repeat that occurs as substring within u with k as large as possible. For example, the input string
u = babbabaabaabaabab
contains the underlined (4,3)-repeat s starting at position 5. Since u contains no other contiguous substring with more than 4 repeats, your program must output the maximum k.
Input
In the first line of the input contains H- the number of test cases (H <= 20). H test cases follow. First line of each test cases is n - length of the input string (n <= 50000), The next n lines contain the input string, one character (either ‘a’ or ‘b’) per line, in order.
Output
For each test cases, you should write exactly one interger k in a line - the repeat count that is maximized.
Example
Input: 1 17 b a b b a b a a b a a b a a b a b Output: 4
since a (4, 3)-repeat is found starting at the 5th character of the input string.
题目链接:SPOJ Repeats
论文里写的比较模糊,突然就往后匹配了,还往前匹配,完全没讲怎么匹配啊,代码还是看这个博客写的:传送门
说一下个人理解,为什么$LCP(i,i+L)/len+1$就是出现的次数?
首先对于一个由循环节构成的字符串$str$,假设它的长度为$len$,最小循环节长度为$k$,那么对于任意的$0 \le i \le len-1-k$,都有$str[i]==str[k+i]$
现在回到LCP问题上,假设两个串的公共前缀已知记为$lcp$,我们枚举的循环节长度为$L$,当前遍历位置为$i$,那么显然有$S[i+j]==S[i+L+j], 0 \le j \le lcp-1$,看这条式子,是不是跟上面的定义式子很像,显然有$len-1-k=lcp-1$,化简得$len=lcp+k$,因此仅仅往后推的循环次数是$(lcp+k)/k=lcp/k+1$,那么仅仅是往后推的最优解,那说不定前面刚好多了几个位置也是相同前缀,跟$lcp\%L$多出来的数凑一凑又是$L$呢?如果这样要至少补$lcp-lcp\%L$,因此我们枚举这个"至少"的位置$i-(lcp-lcp\%L)$,如果这个位置都可以和后面多余的补出一个$L$,那么往前也肯定是可以的,这里可能又回想,那干嘛不再往前考虑考虑,补出2个、3个、4个甚至更多的L呢,应该是没这个必要,因为假如你前面可以补更多的L,那么在前几次遍历的时候它早就被算进了往后推的$lcp$里了,不需要多往前考虑,当然全过程要注意下标是否合法,往前推到负数位置肯定是不行的。还有就是这个题一开始的答案一定要是1,因为1是肯定可以的,因此我们是从$L=2$开始枚举
代码:
#include <stdio.h> #include <iostream> #include <algorithm> #include <cstdlib> #include <cstring> #include <bitset> #include <string> #include <stack> #include <cmath> #include <queue> #include <set> #include <map> using namespace std; #define INF 0x3f3f3f3f #define LC(x) (x<<1) #define RC(x) ((x<<1)+1) #define MID(x,y) ((x+y)>>1) #define fin(name) freopen(name,"r",stdin) #define fout(name) freopen(name,"w",stdout) #define CLR(arr,val) memset(arr,val,sizeof(arr)) #define FAST_IO ios::sync_with_stdio(false);cin.tie(0); typedef pair<int, int> pii; typedef long long LL; const double PI = acos(-1.0); const int N = 50010; int wa[N], wb[N], cnt[N], sa[N]; int ran[N], height[N]; char s[N]; inline int cmp(int r[], int a, int b, int d) { return r[a] == r[b] && r[a + d] == r[b + d]; } void DA(int n, int m) { int i; int *x = wa, *y = wb; for (i = 0; i < m; ++i) cnt[i] = 0; for (i = 0; i < n; ++i) ++cnt[x[i] = s[i]]; for (i = 1; i < m; ++i) cnt[i] += cnt[i - 1]; for (i = n - 1; i >= 0; --i) sa[--cnt[x[i]]] = i; for (int k = 1; k <= n; k <<= 1) { int p = 0; for (i = n - k; i < n; ++i) y[p++] = i; for (i = 0; i < n; ++i) if (sa[i] >= k) y[p++] = sa[i] - k; for (i = 0; i < m; ++i) cnt[i] = 0; for (i = 0; i < n; ++i) ++cnt[x[y[i]]]; for (i = 1; i < m; ++i) cnt[i] += cnt[i - 1]; for (i = n - 1; i >= 0; --i) sa[--cnt[x[y[i]]]] = y[i]; swap(x, y); x[sa[0]] = 0; p = 1; for (i = 1; i < n; ++i) x[sa[i]] = cmp(y, sa[i - 1], sa[i], k) ? p - 1 : p++; m = p; if (m >= n) break; } } void gethgt(int n) { int i, k = 0; for (i = 1; i <= n; ++i) ran[sa[i]] = i; for (i = 0; i < n; ++i) { if (k) --k; int j = sa[ran[i] - 1]; while (s[j + k] == s[i + k]) ++k; height[ran[i]] = k; } } namespace SG { int dp[N][17]; void init(int l, int r) { int i, j; for (i = l; i <= r; ++i) dp[i][0] = height[i]; for (j = 1; l + (1 << j) - 1 <= r; ++j) { for (i = l; i + (1 << j) - 1 <= r; ++i) dp[i][j] = min(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]); } } int ask(int l, int r) { int len = r - l + 1; int k = 0; while (1 << (k + 1) <= len) ++k; return min(dp[l][k], dp[r - (1 << k) + 1][k]); } int LCP(int l, int r, int len) { l = ran[l], r = ran[r]; if (l > r) swap(l, r); if (l == r) return len - sa[l]; return ask(l + 1, r); } } int main(void) { int T, len, i; scanf("%d", &T); while (T--) { scanf("%d", &len); for (i = 0; i < len; ++i) scanf("%s", s + i); DA(len + 1, 130); gethgt(len); SG::init(1, len); int ans = 1; for (int L = 1; L < len; ++L) { for (i = 0; i + L < len; i += L) { int lcp = SG::LCP(i, i + L, len); int cnt = lcp / L + 1; int j = i - (L - lcp % L); if (j >= 0) cnt = max(cnt, SG::LCP(j , j + L, len) / L + 1); ans = max(ans, cnt); } } printf("%d\n", ans); } return 0; }