在写题解之前给自己打一下广告哈~。。抱歉了,希望大家多多支持我在CSDN的视频课程,地址如下:
http://edu.csdn.net/course/detail/209
题目:
How Many Trees? |
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) |
Total Submission(s): 976 Accepted Submission(s): 511 |
Problem Description A binary search tree is a binary tree with root k such that any node v reachable from its left has label (v) <label (k) and any node w reachable from its right has label (w) > label (k). It is a search structure which can find a node with label x in O(n log n) average time, where n is the size of the tree (number of vertices). Given a number n, can you tell how many different binary search trees may be constructed with a set of numbers of size n such that each element of the set will be associated to the label of exactly one node in a binary search tree? |
Input The input will contain a number 1 <= i <= 100 per line representing the number of elements of the set. |
Output You have to print a line in the output for each entry with the answer to the previous question. |
Sample Input 1 2 3 |
Sample Output 1 2 5 |
题目大意:
给你一个n个节点,问能够成多少棵二叉树。
题目分析:
简单题,只要知道有这个公式就好。卡特兰公式的一个应用就是用来求“给出n个节点,问能够成多少棵二叉树”。
an =C(2n,n)/(n+1)=(4n-2)*(an-1 )/(n+1)
先花O(n)时间打表,把前100项的结果全部算出来。以后就是O(1)的时间输出结果
代码如下:
import java.math.BigInteger; import java.util.Scanner; public class Main { public static void main(String[] args) { BigInteger catalans[] = new BigInteger[101]; BigInteger four = new BigInteger("4"); BigInteger two = new BigInteger("2"); BigInteger one = new BigInteger("1"); catalans[1] = new BigInteger("1"); int i; for(i = 2 ; i <= 100 ; ++i){ catalans[i] = catalans[i-1].multiply(four.multiply(BigInteger.valueOf(i)).subtract(two)).divide(BigInteger.valueOf(i+1)); } Scanner scanner = new Scanner(System.in); while(scanner.hasNext()){ int n = scanner.nextInt(); System.out.println(catalans[n]); } } }