导入导出数据
在导入,导出DataFrame数据时,会用到各种格式,分为
可参照IO Tools分类。
如果想要保存为ascii文本则可以使用to_csv,可以对是否保存索引(行号)等参数进设置。
调换colums顺序
若原始数据是这样的:
In [6]: df Out[6]: 0 1 2 3 4 mean 0 0.445598 0.173835 0.343415 0.682252 0.582616 0.445543 1 0.881592 0.696942 0.702232 0.696724 0.373551 0.670208 2 0.662527 0.955193 0.131016 0.609548 0.804694 0.632596 3 0.260919 0.783467 0.593433 0.033426 0.512019 0.436653 4 0.131842 0.799367 0.182828 0.683330 0.019485 0.363371 5 0.498784 0.873495 0.383811 0.699289 0.480447 0.587165 6 0.388771 0.395757 0.745237 0.628406 0.784473 0.588529 7 0.147986 0.459451 0.310961 0.706435 0.100914 0.345149 8 0.394947 0.863494 0.585030 0.565944 0.356561 0.553195 9 0.689260 0.865243 0.136481 0.386582 0.730399 0.561593 In [7]: cols = df.columns.tolist() In [8]: cols Out[8]: [0L, 1L, 2L, 3L, 4L, ‘mean‘]
通过调换columns更改顺序
In [12]: cols = cols[-1:] + cols[:-1] In [13]: cols Out[13]: [‘mean‘, 0L, 1L, 2L, 3L, 4L]
进而可以达到如下效果
In [16]: df = df[cols] # OR df = df.ix[:, cols] In [17]: df Out[17]: mean 0 1 2 3 4 0 0.445543 0.445598 0.173835 0.343415 0.682252 0.582616 1 0.670208 0.881592 0.696942 0.702232 0.696724 0.373551 2 0.632596 0.662527 0.955193 0.131016 0.609548 0.804694 3 0.436653 0.260919 0.783467 0.593433 0.033426 0.512019 4 0.363371 0.131842 0.799367 0.182828 0.683330 0.019485 5 0.587165 0.498784 0.873495 0.383811 0.699289 0.480447 6 0.588529 0.388771 0.395757 0.745237 0.628406 0.784473 7 0.345149 0.147986 0.459451 0.310961 0.706435 0.100914 8 0.553195 0.394947 0.863494 0.585030 0.565944 0.356561 9 0.561593 0.689260 0.865243 0.136481 0.386582 0.730399
(参考来源)
时间: 2024-10-11 08:38:38