pandas的札记

导入导出数据

在导入,导出DataFrame数据时,会用到各种格式,分为

可参照IO Tools分类。

如果想要保存为ascii文本则可以使用to_csv,可以对是否保存索引(行号)等参数进设置。

调换colums顺序

若原始数据是这样的:

In [6]: df
Out[6]:
          0         1         2         3         4      mean
0  0.445598  0.173835  0.343415  0.682252  0.582616  0.445543
1  0.881592  0.696942  0.702232  0.696724  0.373551  0.670208
2  0.662527  0.955193  0.131016  0.609548  0.804694  0.632596
3  0.260919  0.783467  0.593433  0.033426  0.512019  0.436653
4  0.131842  0.799367  0.182828  0.683330  0.019485  0.363371
5  0.498784  0.873495  0.383811  0.699289  0.480447  0.587165
6  0.388771  0.395757  0.745237  0.628406  0.784473  0.588529
7  0.147986  0.459451  0.310961  0.706435  0.100914  0.345149
8  0.394947  0.863494  0.585030  0.565944  0.356561  0.553195
9  0.689260  0.865243  0.136481  0.386582  0.730399  0.561593

In [7]: cols = df.columns.tolist()

In [8]: cols
Out[8]: [0L, 1L, 2L, 3L, 4L, ‘mean‘]

通过调换columns更改顺序

In [12]: cols = cols[-1:] + cols[:-1]
In [13]: cols
Out[13]: [‘mean‘, 0L, 1L, 2L, 3L, 4L]

进而可以达到如下效果

In [16]: df = df[cols]  #    OR    df = df.ix[:, cols]

In [17]: df
Out[17]:
       mean         0         1         2         3         4
0  0.445543  0.445598  0.173835  0.343415  0.682252  0.582616
1  0.670208  0.881592  0.696942  0.702232  0.696724  0.373551
2  0.632596  0.662527  0.955193  0.131016  0.609548  0.804694
3  0.436653  0.260919  0.783467  0.593433  0.033426  0.512019
4  0.363371  0.131842  0.799367  0.182828  0.683330  0.019485
5  0.587165  0.498784  0.873495  0.383811  0.699289  0.480447
6  0.588529  0.388771  0.395757  0.745237  0.628406  0.784473
7  0.345149  0.147986  0.459451  0.310961  0.706435  0.100914
8  0.553195  0.394947  0.863494  0.585030  0.565944  0.356561
9  0.561593  0.689260  0.865243  0.136481  0.386582  0.730399

参考来源

时间: 2024-12-10 23:09:38

pandas的札记的相关文章

python & pandas学习札记

参考文章: pandas使用技巧系列总览 http://www.cnblogs.com/shewell/p/7812162.html

一些Pandas常用方法

Series(列)方法describe(),对于不同类型的变量的列,有不同返回值(http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html) >>> s = pd.Series([1, 2, 3]) >>> s.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3

Pandas学习之常用函数详解

本文和大家分享的主要是Pandas库常用函数相关内容,一起来看看吧,希望对大家学习Pandas有所帮助. 1. DataFrame 处理缺失值 pandas.DataFrame.dropna df2.dropna(axis=0, how='any', subset=[u'ToC'], inplace=True) 把在ToC列有缺失值的行去掉 2. 根据某维度计算重复的行 pandas.DataFrame.duplicated print df.duplicated(['name']).value

用scikit-learn和pandas学习线性回归

对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了. 1. 获取数据,定义问题 没有数据,当然没法研究机器学习啦.:) 这里我们用UCI大学公开的机器学习数据来跑线性回归. 数据的介绍在这: http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant 数据的下载地址在这: http://archive.ics.uci.edu/ml/ma

python之pandas模块的基本使用(1)

一.pandas概述 pandas :pannel data analysis(面板数据分析).pandas是基于numpy构建的,为时间序列分析提供了很好的支持.pandas中有两个主要的数据结构,一个是Series,另一个是DataFrame. 二.数据结构 Series Series 类似于一维数组与字典(map)数据结构的结合.它由一组数据和一组与数据相对应的数据标签(索引index)组成.这组数据和索引标签的基础都是一个一维ndarray数组.可将index索引理解为行索引. Seri

Pandas中如何处理大数据?

近期的工作和Hive SQL打交道比较多,偶尔遇到一些SQL不好解决的问题,会将文件下载下来用pandas来处理,由于数据量比较大,因此有一些相关的经验可以和大家分享,希望对大家学习pandas有所帮助吧. 大文本数据的读写 有时候我们会拿到一些很大的文本文件,完整读入内存,读入的过程会很慢,甚至可能无法读入内存,或者可以读入内存,但是没法进行进一步的计算,这个时候如果我们不是要进行很复杂的运算,可以使用read_csv提供的chunksize或者iterator参数,来部分读入文件,处理完之后

十分钟入门pandas数据结构和索引

pandas数据结构和索引是入门pandas必学的内容,这里就详细给大家讲解一下,看完本篇文章,相信你对pandas数据结构和索引会有一个清晰的认识. 一.数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Series类似于numpy中的一维数组,除了通吃一维数组可用的函数或方法,而且其可通过索引标签的方式获取数据,还具有索引的自动对齐功能:DataFrame类似于numpy中的二维数组,同样可以通用numpy数组的函数和方法,而且还具有其他灵

pandas cookbook【1】

网上看到了关于pandas的用法,虽然练习了不少,但是还是有些不是能记得很清楚.所以就写下来了. chapter1讲的是读取CSV文件.如下代码: 1 #%% 2 import pandas as pd 3 import numpy as np 4 import matplotlib.pyplot as plt 5 # make the graphs a bit prettier 6 pd.set_option('display.mpl_style','default') 7 plt.rcPar

《Python数据分析常用手册》一、NumPy和Pandas篇

一.常用链接: 1.Python官网:https://www.python.org/ 2.各种库的whl离线安装包:http://www.lfd.uci.edu/~gohlke/pythonlibs/#scikit-learn 3.数据分析常用库的离线安装包(pip+wheels)(百度云):http://pan.baidu.com/s/1dEMXbfN 密码:bbs2 二.常用库 1.NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和